

Inauguration Conference Bochum, Sept. 21-23, 2016

Ultra-High Energy **Cosmic Ray Observations**

Karl-Heinz Kampert Bergische Universität Wuppertal

BERGISCHE UNIVERSITÄT **WUPPERTAL**

Features of CR spectrum

Features of CR spectrum

"Espresso" Acceleration

 $\Gamma > 30$ derived from Blazars CRs get boost by Γ^2 in one shot $\Rightarrow E > 10^{20} \text{ eV}$ possible

D. Caprioli, ApJ 811 (2015) L38Similarly:S. Wykes et al. A&A 558, A19 (2013)

P. Biermann, et al. ApJ 746:72 (2012)

Contents

- Experimental: Hybrid Observation of CRs
- The End of the Energy Spectrum: GZK-effect or Exhaustion of Sources?
- Mass Composition: getting heavier
- Arrival Directions: surprisingly isotropic
- Multi-Messenger: UHECR neutrino link
- Future: Upgrades of Auger and TA

Hybrid Observation of EAS

Concept pioneered by the Pierre Anger Collaboration (Fully operational since 06/2008 Now also used by Telescope Array (TA)

Fluorescence light

Particle-density and -composition at ground

Also: Detection of Radio- & Microwave-Signals Karl-Heinz Kampert - Univ. Wuppertal

Pierre Auger Observatory

Pampa

OS

Province Mendoza, Argentina

Ortíz

OS

Minas El Sosr

Cent

Malargue Comp:

Ex For

Kar

1660 detector stations on 1.5 km grid

10

El Sa tral-Pto

El Salitral-Pto.0

Virgen del Carmen

10212

abras

27 fluores. telescopes at periphery

153 radio antennas over 17 km²

Auger Hybrid Observatory

3000 km² area, Argentina 27 fluorescence telescopes plus ...1660 Water Cherenkov tanks

RAPP Inauguration, Bochum, 21. - 23- 9.2016

Pierre Auger Collaboration

~450 Collaborators; 92 Institutions, 18 Countries:

Argentina	Poland	UK	
Australia	Portugal	USA	DIEDDE
Brazil	Romania	Colombia	AUGER
Czech Republic	Slovenia	Belgium Associated	
France	Spain	Bolivia EoI	
		New members are welcome!	

Full members Associate members

Germany

Italy

Mexico

Netherlands

Event Example in Auger Observatory

Event Example in Auger Observatory

CHECR Energy Spectrum

End of the CR-Spectrum (0°-80°)

combined from: infill+hybrid+vertical+inclined events Karl-Heinz Kampert - Univ. Wuppertal

GZK-Effect: Energy losses in CMB

RAPP Inauguration, Bochum, 21. - 23- 9.2016

Need

Mass Composition to disentangle GZK-suppression from maximum energy scenario

Longitudinal Shower Development → Primary Mass

Smooth trend to heavier composition

Karl-Heinz Kampert - Univ. Wuppertal

Data well Described by Exhausted Sources

Decomposition of Xmax-Distributions

Auger collaboration, Phys. Rev. D 90, 122006 (2014)

Anisotropies may tell us more

UHECR Sky surprisingly isotropic

UHECR Sky surprisingly isotropic

Karl-Heinz Kampert - Univ. Wuppertal

RAPP Inauguration, Bochum, 21. - 23- 9.2016

Auger/TA: small/intermediate-scales

very blurry UHECR sky and no clear point sources, yet: ⇒ surprisingly strong* B-fields a/o UHECR dominated by Z>I

* S. Hackstein et al., arXiv:1607.08872 \Rightarrow B ~ 1 nG

> TA 7 years + PAO 10 years Joint analysis with TA in progress

Astrophysical Neutinos

A look to the PeV Neutrino Sky

cross correlations to catalogs or HESS sources ⇒ no signal yet

UHECR-Neutrino correlations?

IC+ Auger+TA-Coll., arXiv:1511.09408; JCAP 01 (2016) 037

20°-scale well in line with hot spots in UHECR sky and point source search; suggest large smearing as expected e.g. for heavy UHECR nuclei

 \triangle TA >57EeV ; \bigcirc Auger >52EeV; \times IceC be cascades ; + IceC be tracks

- cross correlation and stacking analysis done
- 3°, 6°, 9° UHECR angular smearing at 10 EeV around neutrino direction

cascade events: smallest pre-trial value for 22° 575 pairs observed, 490 expected \Rightarrow post-trial p-value of 5 · 10⁻⁴ (8.5 · 10⁻⁵) assuming isotropic CRs (V's)

Potentially interesting, will be monitored

- Recall:
- If flux suppression above 5.1019 eV is due to GZK-effect: expect cosmogenic neutrinos & photons
- If due to source exhaustion: neutrinos & photons strongly suppressed

EAS are sensitive to all v flavors and channels

EeV Neutrino Limits

Would have expected to see 1-7 GZK neutrinos (for different models), have seen none

Neutrino upper limits start to constrain cosmogenic neutrino fluxes of p-sources

EeV Neutrino Limits Challenge GZK

Exhausted UHECR Sources

What did we learn? Where to go?

- UHECR Flux suppression clearly established ... but what is the cause of it?
- Composition increasingly heavier above the ankle
 ... unexpected astrophysics or exotic particle physics?
- UHECR sky surprisingly isotropic, only dipole LSA $>5\sigma$... much stronger B-fields or heavy nuclei ?
- Cosmogenic neutrino & photon fluxes constrain GZK interpr.

Single key observation is needed to answer all the questions:

composition measurement into flux suppression region

- ⇒ composition enhanced anisotropy
- ⇒ attempt for proton astronomy
- \Rightarrow study particle physics features at cms-energies > 100 TeV

How to measure composition with large statistics

Up to know, composition based solely on Fluorescence Telescopes, duty cycle ~10-15% (*different operation modus planned to yield factor ~2*)

- most effectively achieved by upgrade of surface detectors (duty cycle 100%)
- → immediate boost in statistics by a factor of ~10 !

classical approach: enhance electromagnetic/muonic separation of stations

Technical Realisation

Karl-Heinz Kampert - Univ. Wuppertal

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

CERNCOURIER

VOLUME 56 NUMBER 5 JUNE 2016

COMPUTING NA62

CERN's IT facesThe kthe challengeswill taof Run 2untilp16p24

The kaon factory will take data until 2018 p24

~

AugerPrime featured in current Cern Courier

- positively evaluated by International Advisory Committee
- endorsed by International Finance Board
- engineering array 08/2016
- construction 03/2017 2018
- data taking into 2025
- e costs: 12.5 M€
- ~60% of required funds already collected
- do composition enhanced anisotropy
- p-astronomy: proof of principle
- particle physics beyond LHC

RAPP Inauguration, Bochum, 21. - 23- 9.2016

The road to a better understanding of the sources and origin of UHECRs passes through the joint study of the three fundamental observables:

energy spectrum, composition and arrival directions

Only AugerPrime can do this! Multi-Messenger is becoming Reality!

Thank you for your attention!

Photo by Steven Saffi