Cosmic-ray & gas investigations with Fermi

Isabelle Grenier

on behalf of the Fermi LAT Collaboration AIM, Université Paris Diderot & CEA Saclay

- - ★ young historical remnants

signature of freshly accelerated nuclei?

SNR trends in y rays

10²

10¹

¢ermi

RX J1713.7-3946

Cas A

Tycho

IC 443

Cygnus Loop

W44

- O mixed interpretations
 - \bullet some π^0 decay dominated
 - ♦ others IC dominated
- O softer spectra (few GeV cut-off energies) than for
- O older SNRs tend to be

Remote sensing of super-GeV cosmic rays

joint γ-ray and dust modelling

Multi-GeV cosmic rays in the local interstellar medium

∮ermi

 \bigcirc γ -ray intensity scales well with N(HI) column density => possible measure of $n_{CR}(E)$

local gas emissivities (0.4-10 GeV)

- uniform CR spectrum across the Gould Belt clouds

♦ $u_{CR} \approx 1.9 \text{ eV cm}^{-3}$

Grenier, Strong & Black 2015

- ◆ Sco-Oph (100-200 pc): ζ = (2-12) 10⁻¹⁷ s⁻¹
- ◆ Per OB2 (300 pc): (5.6±3.2) 10⁻¹⁶ s⁻¹
 & (5.9±3.5) 10⁻¹⁶ s⁻¹

despite same GeV CR flux

=> low-energy environmental effects ?

● no spectral deviations across the HI, DNM, and H₂ gas phases down to pc scale ● \approx uniform penetration at the current precision for CRs > GeV

ok with diffusion scale > kpc and with models by Skilling & Strong '76 or Everett & Zweibel '11

Multi-GeV cosmic rays in the Milky Way

clouds in the halo

 \bigcirc decline in $q_{HI} \gamma$ -ray emissivity to high altitudes at 97.5% C.L.

♦ unclear trends

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0

2

emissivity (scaling w.r.t. local)

★ may favour diffusion models with a small halo

cosmic rays across spiral arms

8.5

log(E) [eV]

9

9.5

10.5

IΙ

11

-23.6

-24

-23.8 -

10

∮ermi

very uncertain in the inner rings !!!

the Cygnus X nursery

S 10⁶ M☉ of gas forming stars
> 600 stars > 4 M☉, 3.5 - 6 Myr old

> 10 OB associations at 1.4 kpc

CGPS/IRAS 74 cm 21 cm 60 µ 25 µ

cocoon of fresh cosmic rays

- \bigcirc CRs from young γ Cygni SNR ?
 - \blacklozenge barely possible if D_{ISM}(E), spectro-imaging tests soon
- Starburst >1500 OB stars, 3-6 Myr old (SNe ≪)
 - + L_{cocoon} < 0.03% and 7% of P_{winds}
 - \bullet saturated MHD turbulence, $\langle B \rangle = 1.8$ nT, 10 pc injection scale (wind termination shocks)
- => D(E) = D_{ISM}(E) / 100 => efficient confinement (100 kyr at TeV, 300 kyr at 100 GeV)
 - + escape of "exhausted" CRs because of severe hadronic losses ?
 - => emerging 2nd/1ary ?
 - => CR ionisation rate in surrounding clouds ?
 - ◆ escape of "regenerated" CRs because of repeated wind-shock accelerations (re-)acceleration up to E(p) = 150 TeV peak 10-100 GeV protons

HE neutrinos ?

other CR cocoons in Galactic starburst regions?

¢ermi

- O 30 Doradus starburst: pt-source confusion with 2 bright pulsars, 30 Dor C superbubble not detected
- N11 starburst region not detected
- O diffuse emission => central peak CR density of order 1/3 the local Galactic one (LIS)
- extended emission spots: possibly 2 to 6 times more CR density

