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∼1 GeV. The SED peaks were located at significantly higher
energies than for the usual states of 3C 279, when the peak is
located below the Fermi-LAT band (<100MeV), but lower
than Epeak observed in the 2013 December 20 flare (3 GeV).

Figure 4 shows the γ-ray SED as measured by Fermi-LAT
for each orbit. In these plots, Orbits F and G and Orbits H and I
were combined because they showed similar spectral fitting
results and fluxes. The spectra in the “pre-outburst” and “post-
flare” periods as defined in Figure 1 were also extracted for
comparison. The spectral peaks are apparently located within
the LAT energy band during the outburst. The peak SED flux
reaches nearly ∼10−8 erg cm−2 s−1, corresponding to an
apparent luminosity of 1049 erg s−1.

3. DISCUSSION

For the first time, Fermi-LAT detected variability of
>100MeV γ-ray flux from a blazar on timescales of

~t 5 minutesvar,obs or shorter. These timescales are compar-
able to the shortest variability timescales detected above
100 GeV in a handful of blazars and a radio galaxy
by ground-based Cherenkov telescopes (PKS 2155–304,
Aharonian et al. 2007; Mrk 501, Albert et al. 2007; IC 310,
Aleksić et al. 2014). Moreover, this is only the second case
when such timescales have been reported for an FSRQ blazar,
after PKS 1222+216 (Aleksić et al. 2011), while Fermi-LAT
had only ever detected variability as short as hour timescales in
some FSRQs (e.g., Abdo et al. 2011a; Saito et al. 2013;
Hayashida et al. 2015). This observational result imposes very
stringent constraints on the parameters of the γ-ray emitting
region.
Emitting region size: the observed variability timescale

constrains the characteristic size of the emitting region radius
( ) ( )�� �< +g

-R ct z1 10 50 pcvar,obs
4 , where � is the

Doppler factor. With such an extremely short variability
timescale, we may consider a significantly larger dissipation

Figure 4. (a), (b): Gamma-ray SEDs of 3C 279 for each orbit during the outburst phase, as well as “pre-outburst” and “post-flare” as indicated in Figure 1. The
downward arrows represent 95% confidence level upper limits. (c): Best-fit parameters of the spectra based on the log-parabola model for each orbit (see Table 1 for
numbers). (d) Broadband SED of Orbits C and D, and some historical multi-band observations with EGRET, MAGIC, and Fermi-LAT.
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Blazars: Supermassive Black Holes with Relativistic Jets Pointed at Us
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Classes of Active Galactic Nuclei and Unification

Dermer & Giebels (2016)
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Blazar spectral energy (power) distributions

 BL Lacs: emission to VHE/TeV energies
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Blazar Modeling

Leptonic jet models:  
• Nonthermal synchrotron radiation for radio 

through optical (low-energy hump) 
• Compton scattering of ambient radiation 

fields by jet electrons making high-energy X-
ray/γ-ray component by synchrotron self-
Compton (SSC) or external Compton (EC) 
processes (FSRQs) 

Lepto-Hadronic jet models: 
• Nonthermal synchrotron radiation for radio 

through optical (low-energy hump) 
• Secondary nuclear production  
        p+N → πο, π± → γ, ν, n, e± 

• Proton and ion synchrotron radiation  
 p+B → γ 
• Photomeson production  
 pγ → πο,π± → γ, ν, n, e± 

Hadrons escape to become UHECRs

Nonthermal  γ rays ⇒ relativistic particles + 
intense photon fields



Particle Acceleration and Radiation in Leptonic Blazar Models

EC

Boettcher & Chiang (2002)  
Finke et al. (2008) 
Dermer & Menon (2009)

νε ν Ff =

1. Relativistic outflows 
2. Single zone; exclude radio 
3. Synchroton, SSC, and EC 
4. Electron energy distribution 
5. Power-law injection + losses 
6.      Nonlinear losses 
7.       Adiabatic expansion 
8.       Light travel-time effects 
9.        Cascading/γγ pairs in source and IGM 
10.        Multizone/spine-sheath 
11.          Anisotropic effects 
12.              Reverberation/echo 

Trend toward increasing 
complexity in blazar modeling



Spectrum and Jet Physics

• BL Lacs: synchrotron/SSC model fits 3C 454.3

3C 279
Mrk 421

Mrk 501

Hayashida et al. 2012

Abdo et al. 2011b

Abdo et al. 2011a

• FSRQs:  synchrotron/SSC + EC

Bonnoli et al. 2009

Böttcher et al. 2009

3C 279

Mrk 501

Mrk 421

Multiple parameters: non-uniqueness



The Synchrotron Puzzle

In Fermi acceleration scenarios, acceleration timescale > Larmor timescale 
Equating synchrotron energy loss time scale with Larmor timescale implies maximum 

synchrotron energy ~ 100Γ MeV 

Peak or maximum synchrotron frequency of blazars 4-7 orders of magnitude less than  
theoretical maximum 

(de Jager & Harding 1992)

1LAC; Abdo et al. 2010

γ-ray photon index vs. peak synchrotron frequency



First-Order Fermi Acceleration 

(Naively) makes power-law distributions 
  
Second-order Fermi Acceleration 

Makes curved log-parabola-like particle distribution 
(Massaro et al. 2004; Stawarz & Petrosian 2008; Tramacere et al. 2007, 2011) 

Fermi 1: separate acceleration and radiation regions 
Fermi 2: acceleration and radiation regions same 

Turbulent particle acceleration and magnetic reconnection invoked in highly 
magnetized jets for short variability time scales 
       (Lazarian et al.; Sironi & Spikovsky 2014; Giannios et al. 2009, Sironi, Petropoulou, & Giannios 2015) 

Bright Fermi blazars explained by broken power-law and log-parabola spectral functions 
about equally (Kohler & Nalewajko 2015) 

Acceleration Physics and the Electron Energy Distribution
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Spectral Index Diagram

Blazar modeling with log-parabola electron energy distributions

3LAC; Ackermann et al. 2015
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Near-equipartition, log-parabola model
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Dermer, Cerruti, Lott, Boisson, Zech 2014
kinematic

lum

Electron energy distribution (EED):
Simplest non-trivial 3 parameter EED                        b is log parabola width parameter 

Completely solvable system; obtain external 
radiation field energy densities in FSRQ analysis

b = 1

Equipartition relation:



Equipartition modeling
Dermer et al. 2014
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Cerruti et al. 2013

modulo  b (from SED) 
ζs (from SED modeling) 
ζe (equipartition assumption;  

from SED modeling) 
Data of Hayashida et al. (2012) on 3C 279 
GeV break in LSPs, ISPs (Cerruti et al. 2013) 
Models close to equipartition

3C 454.3

3C 279



Analytic form for Spectral Index Diagrams
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(Dermer et al. 2014)

4
bbsy ≅ (Massaro et al. 2006)

8
bbSSC ≅ (Paggi et al. 2009)
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By binning results according to b from synchrotron SED fit, identify radiation process



Equipartition Model vs. Synchrotron Spectral Index Diagram
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Slope for EC processes: 

Slope for SSC processes: 

16
9bkSSC =

4
3bkEC =

2LAC data: Red: FSRQ; Blue: BL Lac w/ z;  
Green: BL Lac w/o z

Three γ-ray emitting processes: 
SSC, EC BLR, EC IR 
– External radiation field 

densities: 
Ly alpha: 0.01 erg/cm3 
IR torus: 10-3 erg/cm3;  1000 K dust 
– Compton dominance restricts 

EC, SSC regimes 
– Double-headed arrow shows 

slope of +1 for Compton 
dominance (in Thomson 
regime)

b by b b 2SSC = in Equation (4) (Paggi et al. 2009) and
replacing pk� by B B2pk,SSC D cr pk
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from Table 1. Note that the Ln n peak SSC frequency is a factor
10 b2 larger than pk,SSC� . The SSC expression is justified by a
more detailed derivation in Appendix A. The uncertainty DGg
in the spectral index related to geometrical uncertainties can be
estimated by letting f0 range from unity for a blast-wave shell
geometry to f 1 30 = for a comoving spherical-blob geometry.
From Equations (5) and (8), one can see that this translates into
an uncertainty b0.30ECDG @g for EC processes and an

uncertainty b0.04SSCDG @g for SSC processes.
We also derive the Thomson-regime expressions

b
E

b
2

2
log 2.4

2
log 9EC,

GeV 23( ) ( )nG = + -g
g

for Gg versus Cn in EC processes, and

b
E

b
2

4
log 2.4

4
log 10SSC,

GeV 23( ) ( )nG = + -g
g

for Gg versus Cn in SSC processes. Here 1023 C
23n n= Hz is

the peak frequency of the Compton component of the Ln n SED.
Note that Equation (9) is independent of the target photon
energy, because the expression assumes that the EED and
Doppler factor are adjusted to produce a Compton-scattered
γ-ray spectrum that peaks at Cn .

3. MODELING THE BLAZAR SPECTRAL-INDEX
DIAGRAM

Figure 1 shows measured values of Fermi-LAT spectral
index Gg from the 2LAC (Ackermann et al. 2011) derived from
a single power-law fit to the complete data set in the
0.1–100 GeV range for sources with TS 25> .7 The red, blue,
green, and black data symbols correspond, respectively, to
γ-ray sources detected with the Fermi-LAT that have been
associated with FSRQs, BL Lac objects with and without
redshifts, and blazars with optical data too poor to determine if
the source is an FSRQ or BL Lac.

From inspection of the plot, it is clear that a function of the
form d k log 14– nG =g will provide a reasonable description of
the data. For the entire FSRQ and BL Lac sample, but
excluding other blazar candidates, values of k 0.18 0.03= o
and d 2.25 0.04= o are deduced in the 3LAC (Ackermann
et al. 2015). Comparing this value with the analytic expres-
sions, Equations (5) and (8), a larger value of b is implied for
SSC processes compared to EC processes, but in both cases
consistent with b 1 3» .

The typical value of b can also be deduced from the average
nonthermal blazar synchrotron SED, when fit with an
expression of the form of Equation (3). From X-ray analysis
of Beppo-SAX data on Mrk 501, Massaro et al. (2004)
finds values of bsy ranging from 0.12–0.33, implying a

corresponding log-parabola width parameter b 0.52 . Narrow
bandwidth modeling of X-ray synchrotron emission from
Mrk 421 gives b 0.3 0.5sy –@ (Tramacere et al. 2007), though
values of b 0.17 0.02sy = o (2006 July 15 pointing),
b 0.11 0.02sy = o (2006 April 22 pointing), and
b 0.08 0.03sy = o (2006 June 23 pointing) are obtained in
more complete joint XRT-BAT analysis (Tramacere et al.
2009), consistent with an electron distribution with
b b5 0.5sy@ » . Chen (2014) finds that bsy is distributed in
the range b0.05 0.25sy1 1 , implying b0.25 1.251 1 . More
importantly, he finds a dependence of bsy on sn , which we
discuss further in Section 5. The values of b deduced from
spectral modeling tend to be larger than obtained from the slope
implied by the spectral-index diagram.

3.1. Standard Parameters in Log-parabola Model

To compare the log-parabola equipartition model with data,
we adopt a standard parameter set, and take

b t L E1 2, 1. 11e s4 48 GEV ( )z z= = = = = =

The reasoning driving the choice of the standard variability
time scale is that the masses of supermassive black holes
powering blazars—both FSRQs and BL Lacs—are typically of
the order M109~ :. The value t 14 @ or t 3var @ hr corresponds
to the light-crossing time across a size equal to the Schwarzs-
child radius of a M109~ : black hole, though of course shorter
variability time scales have been recorded during spectacular

Figure 1. Data are the 100> MeV photon spectral index values Gg as a function
of peak synchrotron frequency sn for blazars from the 2LAC (Ackermann et al.
2011). Red, blue, green, and black symbols identify, respectively, FSRQs, BL Lac
objects with redshifts, BL Lac objects without redshifts, and blazars with data too
poor to determine if the source is an FSRQ or a BL Lac object. Left: Curves
labeled by EC BLR, EC IR and SSC for EC processes with BLR photons, EC
processes with IR photons and SSC processes, respectively, show Gg vs. sn
predictions of the log-parabola equipartition model using standard parameters
given by Equation (11). Also, 2 100

5� = ´ - and u 100
2= - erg cm−3 for Lyα,

and 4.6 100
7� = ´ - and u 100

3= - erg cm−3 for the ∼1000 K IR radiation.
Thick curves give numerical calculations, and thin curves show analytic results,
from Equations (5) and (8). The thick curves that approach constant values at
large sn are numerical predictions for the power-law, log-parabola model,
Equation (12). Right: Compton-dominance C� as a function of sn for EC BLR,
EC IR, and SSC processes, as labeled. The line with arrows has a slope of 1+ in
the C� vs. sn plane.

7 Energy flux is derived in five energy bands in intervals defined by 0.1, 0.3,
1, 3, 10 and 100 GeV.
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Equipartition model and γ-ray spectral index diagrams
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Thomson-regime 
expressions:

Rules out SSC as a process for making γ-rays from FSRQs

Discriminate between SSC and EC processes in blazars



Departures from equipartition: the case of Mrk 501

16

Markov Chain Monte Carlo method (Lewis & 
Bridle 2002; Yuan et al. 2011; Liu et al. 2012) 

Applied to Mrk 421 (Yan et al. 2013) and Mrk 
501 (Peng et al. 2014) using different electron 
energy distributions 

Blazar can be far from equipartitionUse ζs and ζe for spectral-index modeling 
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ABSTRACT

The absolute power of a relativistic black hole jet includes the power in the magnetic field, the leptons, the hadrons,
and the radiated photons. A power analysis of a relativistic radio/γ-ray blazar jet leads to bifurcated leptonic
synchrotron-Compton (LSC) and leptohadronic synchrotron (LHS) solutions that minimize the total jet power.
Higher Doppler factors with increasing peak synchrotron frequency are implied in the LSC model. Strong magnetic
fields 2¢B 100 G are found for the LHS model with variability times 110 s3 , in accord with highly magnetized,
reconnection-driven jet models. Proton synchrotron models of2100 GeV blazar radiation can have sub-Eddington
absolute jet powers, but models of dominant GeV radiation in flat spectrum radio quasars require excessive power.

Key words: galaxies: active – gamma rays: galaxies – radiation mechanisms: non-thermal – relativistic processes

1. INTRODUCTION

One of the fascinating current research topics in blazar
astronomy (e.g., see Böttcher et al. 2012; Dermer & Giebels
2016 for review) is the puzzle of the short-timescale γ-ray
variability, not only in BL Lac objects such as Mrk 421
(Fortson et al. 2012), Mrk 501 (Albert et al. 2007), and PKS
2155-304 (Aharonian et al. 2007), but also in flat (radio)
spectrum radio quasars (FSRQs), in particular, PKS 1222+216
(Aleksić et al. 2011) and 3C 279 (The Fermi-LAT Collabora-
tion 2016). These short timescales confound theoretical
expectations that the power of the black hole’s jet is most
efficiently released on times corresponding to the light-travel
time across the Schwarzschild radius of the black hole.
Constraints from the gg opacity of γ-rays passing through
the optical and IR fields in the inner jet place the γ-ray emission
region outside the broad-line region, at the 20.1pc scale or
greater, while the short time variability would imply very
narrow jets. These behaviors are apparently best satisfied in
highly magnetized jets where energy dissipation is most
probably mediated via magnetic reconnection (e.g., Romanova
& Lovelace 1992; Giannios & Spruit 2006; Giannios
et al. 2009).

An analysis of relativistic jet properties required to account
for the apparent luminosity, variability, and peak frequencies of
the characteristic two-hump spectral energy distribution (SED)
of blazars under the condition of minimum total jet power is
presented here. Conventionally, the lower-frequency (radio-to-
UV/X-ray band) is thought to be lepton-synchrotron radiation.
The X-ray/γ-ray emission is made by leptonic Compton
processes in the leptonic synchrotron-Compton (LSC) model
(Dermer et al. 1992; Maraschi et al. 1992; Sikora et al. 1994;
Mastichiadis & Kirk 1997) and by proton synchrotron
emission in the leptohadronic synchrotron (LHS) model
(Aharonian 2000; Mücke & Protheroe 2001) considered here.

The main differences between the two models are that the
magnetic fields and absolute jet powers are roughly an order of
magnitude less and the Doppler factors dD generally larger in
the LSC model than in the LHS model. In rapidly flaring states
with 1t 1v,3 , where the source-frame variability time is
=t t10v v

3
,3 s, the minimum absolute jet-power condition for

blazars in the LSC model implies Gauss or sub-Gauss fields,
d ~ 20D –200, and sub-Eddington jet powers by many orders of
magnitude. In the LHS model for very high energy (VHE;
2100 GeV) emission, the minimum jet-power condition
implies magnetic fields ∼30–200 G and d ~ 4D –30. With such
strong fields, ultrahigh-energy cosmic-ray (UHECR) accelera-
tion is in principle possible, though the absolute jet power,
particularly for high synchrotron luminosity blazars, can
exceed the Eddington luminosity p s= =L GM m c4Edd • p T

´ M1.26 1047
9 of a black hole of mass = :M M M109 •

9 .

2. RELATIVISTIC JET-POWER ANALYSIS

A standard one-zone model is analyzed (Böttcher et al. 2012;
Dermer & Giebels 2016). The emission region is assumed to be
spherical with comoving radius d¢ =r c tb vD moving with
relativistic bulk Lorentz factor bG = - �1 1 12 and
speed �c at an angle θ with respect to our observer’s line of
sight. The Doppler factor [ ( )]d b q y= G - = G-1 cos 2D

1

when G � 1 and q � 1, defining ( ) .y qº + G1 12 .
The absolute jet power for a two-sided jet, which includes

contributions from magnetic field, photons, relativistic elec-
trons, non-relativistic (i.e., cold), and relativistic protons, is
given by (Celotti & Fabian 1993; Zdziarski 2014; Dermer
et al. 2015)

( ) ( )åp b= ¢ G ¢ + ¢ + +
=

L r c u P L L2 , 1j b
i B e p

i i j
r

j
2 2

, ,

cold

where ( )¢ = ¢P u1 3i i for relativistic particles/magnetic field, Lj
r

is the absolute photon luminosity, and Lj
cold is the contribution

of cold protons to the total jet power. The magnetic-field
energy density p¢ = ¢¢u B 8

B
2 , so the magnetic-field component

of the jet power is �y =- L x yj
B2 2 4, where � = c t B 12v

3 2
cr
2 ,

= ¢x B Bcr, the critical magnetic field �= =B m c ecr e
2 3

´4.4 1013 G, and dD is replaced by y.
For simplicity, we assume monoenergetic particle distribu-

tions for both relativistic electrons and protons, namely,
( ) ( ¯ )g d g g¢ = ¢ - ¢N Ne,p e,p e,p e,p e,p . The average comoving energy

(in m ce
2 units) of a synchrotron photon emitted by a particle

with Lorentz factor g¢i ( =i e p, ) is � � d¢ = =i is, s, D
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ABSTRACT

The absolute power of a relativistic black hole jet includes the power in the magnetic field, the leptons, the hadrons,
and the radiated photons. A power analysis of a relativistic radio/γ-ray blazar jet leads to bifurcated leptonic
synchrotron-Compton (LSC) and leptohadronic synchrotron (LHS) solutions that minimize the total jet power.
Higher Doppler factors with increasing peak synchrotron frequency are implied in the LSC model. Strong magnetic
fields 2¢B 100 G are found for the LHS model with variability times 110 s3 , in accord with highly magnetized,
reconnection-driven jet models. Proton synchrotron models of2100 GeV blazar radiation can have sub-Eddington
absolute jet powers, but models of dominant GeV radiation in flat spectrum radio quasars require excessive power.
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1. INTRODUCTION

One of the fascinating current research topics in blazar
astronomy (e.g., see Böttcher et al. 2012; Dermer & Giebels
2016 for review) is the puzzle of the short-timescale γ-ray
variability, not only in BL Lac objects such as Mrk 421
(Fortson et al. 2012), Mrk 501 (Albert et al. 2007), and PKS
2155-304 (Aharonian et al. 2007), but also in flat (radio)
spectrum radio quasars (FSRQs), in particular, PKS 1222+216
(Aleksić et al. 2011) and 3C 279 (The Fermi-LAT Collabora-
tion 2016). These short timescales confound theoretical
expectations that the power of the black hole’s jet is most
efficiently released on times corresponding to the light-travel
time across the Schwarzschild radius of the black hole.
Constraints from the gg opacity of γ-rays passing through
the optical and IR fields in the inner jet place the γ-ray emission
region outside the broad-line region, at the 20.1pc scale or
greater, while the short time variability would imply very
narrow jets. These behaviors are apparently best satisfied in
highly magnetized jets where energy dissipation is most
probably mediated via magnetic reconnection (e.g., Romanova
& Lovelace 1992; Giannios & Spruit 2006; Giannios
et al. 2009).

An analysis of relativistic jet properties required to account
for the apparent luminosity, variability, and peak frequencies of
the characteristic two-hump spectral energy distribution (SED)
of blazars under the condition of minimum total jet power is
presented here. Conventionally, the lower-frequency (radio-to-
UV/X-ray band) is thought to be lepton-synchrotron radiation.
The X-ray/γ-ray emission is made by leptonic Compton
processes in the leptonic synchrotron-Compton (LSC) model
(Dermer et al. 1992; Maraschi et al. 1992; Sikora et al. 1994;
Mastichiadis & Kirk 1997) and by proton synchrotron
emission in the leptohadronic synchrotron (LHS) model
(Aharonian 2000; Mücke & Protheroe 2001) considered here.

The main differences between the two models are that the
magnetic fields and absolute jet powers are roughly an order of
magnitude less and the Doppler factors dD generally larger in
the LSC model than in the LHS model. In rapidly flaring states
with 1t 1v,3 , where the source-frame variability time is
=t t10v v

3
,3 s, the minimum absolute jet-power condition for

blazars in the LSC model implies Gauss or sub-Gauss fields,
d ~ 20D –200, and sub-Eddington jet powers by many orders of
magnitude. In the LHS model for very high energy (VHE;
2100 GeV) emission, the minimum jet-power condition
implies magnetic fields ∼30–200 G and d ~ 4D –30. With such
strong fields, ultrahigh-energy cosmic-ray (UHECR) accelera-
tion is in principle possible, though the absolute jet power,
particularly for high synchrotron luminosity blazars, can
exceed the Eddington luminosity p s= =L GM m c4Edd • p T
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2. RELATIVISTIC JET-POWER ANALYSIS

A standard one-zone model is analyzed (Böttcher et al. 2012;
Dermer & Giebels 2016). The emission region is assumed to be
spherical with comoving radius d¢ =r c tb vD moving with
relativistic bulk Lorentz factor bG = - �1 1 12 and
speed �c at an angle θ with respect to our observer’s line of
sight. The Doppler factor [ ( )]d b q y= G - = G-1 cos 2D

1

when G � 1 and q � 1, defining ( ) .y qº + G1 12 .
The absolute jet power for a two-sided jet, which includes

contributions from magnetic field, photons, relativistic elec-
trons, non-relativistic (i.e., cold), and relativistic protons, is
given by (Celotti & Fabian 1993; Zdziarski 2014; Dermer
et al. 2015)

( ) ( )åp b= ¢ G ¢ + ¢ + +
=

L r c u P L L2 , 1j b
i B e p

i i j
r

j
2 2

, ,

cold

where ( )¢ = ¢P u1 3i i for relativistic particles/magnetic field, Lj
r

is the absolute photon luminosity, and Lj
cold is the contribution

of cold protons to the total jet power. The magnetic-field
energy density p¢ = ¢¢u B 8

B
2 , so the magnetic-field component

of the jet power is �y =- L x yj
B2 2 4, where � = c t B 12v

3 2
cr
2 ,

= ¢x B Bcr, the critical magnetic field �= =B m c ecr e
2 3

´4.4 1013 G, and dD is replaced by y.
For simplicity, we assume monoenergetic particle distribu-

tions for both relativistic electrons and protons, namely,
( ) ( ¯ )g d g g¢ = ¢ - ¢N Ne,p e,p e,p e,p e,p . The average comoving energy

(in m ce
2 units) of a synchrotron photon emitted by a particle

with Lorentz factor g¢i ( =i e p, ) is � � d¢ = =i is, s, D
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( ) ( )m g¢ ¢B B3 2 icr
2, where m = 1 (m me p) for electrons

(protons). The comoving particle energy density
is ḡ p¢ = ¢ ¢u m c N r3 4i i i i b

2 3.
The apparent synchrotron luminosity radiated by the

relativistic particles is given by =L is,

¯d x m s g p¢ ¢N c B 6i i iD
4 2

T
2 2 , where xi is the radiative efficiency

averaged over the energy injection spectrum of particle species
i (Protheroe & Mücke 2001). In its simplest form, this is written
as ( ( ¯ ) )x g= + ¢ -t t1i i isyn, ad

1, where t isyn, is the synchrotron
cooling timescale and = ¢t r cbad .

The energy density in relativistic particles is then given
by ¯x m s d g¢ = ¢ ¢u m c L B c t9 2i i i i v i

2
s,

2
T

2
D
7 4 3 . The jet power

in non-thermal leptons is therefore �y =- - -L x yj
2 e 3 2 5 2

( ( ) )�+ - -L x y1 2 s,e
3 2 1 2 , where ( )� p= 3 3 2

( )�sm c L c B tve
2

s,e T cr
2

s,e . Henceforth, we identify the electron
synchrotron luminosity Ls,e and energy �s,e as the peak
luminosity and peak energy of the low-energy hump of the
SED, i.e., ºL L10es,

45
45 erg s

−1 and � �º -
-10s,e

3
3.

Following a similar approach for the proton component, we
find ( ) h¢ =u m c9p p

2 2 x m s d¢ ¢L r c t eB2 b vs,p p
2 2 3

T
2

D
6 3, where we

used ḡ¢ = ¢ ¢ =r m c eBL p p
2 h-1 ¢rb with .h 1 depending on the

specifics of the acceleration process; for h = 1 this condition
results in the Hillas criterion for confinement (Hillas 1984).
After substitution of xp, the jet power in relativistic
protons is �y =- - -L x yj

p2 3 4 ( ( ) )�+ - -L x y1 2 s,p
3 4 , where

( )� pº m c3 p
2 2 h m sL ec t Bvs,p

2 2
T

2
cr
3 . In this context, the

proton synchrotron luminosity Ls,p is identified as the peak
luminosity of the high-energy hump of the SED, i.e.,

º gL L10s,p
45

,45 erg s
−1.

The jet power carried by the non-relativistic
proton component is ( )p b= ¢ G G -L r c2 1j b

cold 2 r¢ »c2

p ¢ Gr c n m c2 2 2
p
cold

p
2, where ḡ= ¢ ¢�n n u m cp

cold
e e e e

2 under
the assumption of one proton per electron. Thus, the contribution
of the cold-proton component to the total power is

�y =- - -L x yj
2 cold 1 2, where �� p s� m c L ct B27 8 vp

2
s,e T s,e cr

2 .
Finally, we consider the absolute jet power in

radiation, given by k y d=L Lj
r

s,e
2

D
2 (Celotti & Ghisellini

2008; Dermer et al. 2015). The factor k =
( )z y+ + +L L A2 1 3 2 5Cs s,p s,e

2 accounts for the power
in SSC photons from the zs factor, the power in proton
synchrotron radiation, and power in external Compton
emission through AC. Thus, �y k= º- - -L L y yj

r2
s,e

2 2. An
analytical derivation of the conditions that minimize the jet
power is feasible in two limiting regimes:

Case 1: LSC Model. Here we assume that the jet’s
relativistic particle content is purely leptonic, so that � l 0.
For the purposes of the analytical treatment, we neglect Lj

cold

and set x = 1e . Minimization of y- Lj
2 with respect to

x y, results in ( ) ( ) ( )� � �= - -y 12 4 3min
7 16 3 16 1 4 and

( ) ( ) ( )� � �= -x 12 3 4min
13 16 3 4 1 16. The minimum absolute

power is then ( )( ) ( ) ( )� � �y =- L 2 3 12 3 4j
2

,min
1 8 1 2 3 8. The

magnetic field that minimizes jet power in the LSC model
is �k¢ = - -

-
- -B t L0.17 vmin

13 16
,3
5 8

3
3 8

45
1 16 G, and the Doppler

factor �d k= -
-L t59.3 vD,min

7 16
45
3 16

3
1 8

,3
1 8. The Lorentz factor

of electrons powering the low-energy blazar emission is
found to be ¯ �g k¢ ´ -

-� L t5.3 10 ve
4 3 16

3
5 8

45
1 16

,3
3 8, while

the maximum photon energy that can be radiated via
leptonic processes in the black hole frame is given
by ¯ �d g k= ¢ @ -E m c L t1.6 ve,max D,min e e

2
3

3 4
45
1 8 5 8

,3
1 4 TeV. The

minimum jet power is a small fraction of the isotropic
synchrotron luminosity, precisely, y @- L Lj

2
,min s,e

�k´ - -
-
-t L2.3 10 v

3 1 8
,3

1 4
45

3 8
3
1 4, while the absolute radiated

power is � L12.5% j,min , since y k´- �L 2.8 10j
r2
,min

41 1 8

�-
-L tv45

5 8
3
1 4

,3
1 4 erg s−1 (see also Ghisellini et al. 2014). The

contributions of the magnetic field and leptons to the total
jet power are, respectively, �L L37.5%j

B
j,min ,min and

�L L50% .j
e

j,min ,min Departure from the minimum power
conditions would also imply �L L 1j

B
j
e (e.g., Tavecchio &

Ghisellini 2016).
Case 2: LHS Model. Here, we assume that the jet’s leptonic

energy content, though sufficient to illuminate the blazar’s
submillimeter–optical part of the SED, is negligible compared
to the combined energy content in the protons, magnetic field,
and photons, so that � l 0. Same as before, we set � l 0
and x = 1p for the derivation of the minimum jet power. Under
these assumptions, we find ( ) ( ) ( )� � �= - -y 6 2 3min

5 14 3 14 1 7

and ( ) ( ) ( )� � �= -x 6 2 3min
4 7 1 7 3 7, and the minimum

absolute power becomes ( ) ( ) ( )� � �y =- L 6 2 3j
2

,min
2 7 3 7 2 7.

The magnetic field and Doppler factor that minimize jet
power in the LHS model are therefore ¢ =Bmin

k-147 4 7 h3 7
g

- -t L Lv,3
4 7

45
4 7

,45
3 7 G and d k= 6.9D,min

5 14 h-1 7

g
- -L t Lv45

5 14
,3
1 7

,45
1 7, respectively. The proton radiative efficiency

is x � 1p for dB and ¢B values close to those that minimize the
jet power. The maximum energy of protons after escaping
from the jet is given by ¯d g= ¢ �E m c 52p,max p

2
D,min p

h-6 7( )k gt L Lv,3 45 ,45
1 7 EeV. The photon energy of the proton

synchrotron radiation emitted in the frame of the black hole
k@ -E 0.9s,p

9 14 h-8 7
g

- -L L tv45
9 14

,45
6 7

,3
1 7 TeV. The minimum

jet power in the LHS model is given by
( hy k@ ´- L t1.6 10j v

2
,min

44
,3 )gL L,45 45

2 7 erg s−1, with only
a weak dependence on the observables. For those minimum
power conditions, it is found that the magnetic field, relativistic
proton, and radiation absolute powers are, respectively,
50%, 33%, and 17% of Lj,min .

3. RESULTS

We present plots of the jet properties for the minimum power
conditions and values of y- L Lj

2
Edd in the ¢B -dD parameter

space. The solutions to the jet-power Equation (1) in the LSC
and LHS limits are plotted in Figures 1 and 2, respectively.
Transition from the LSC to the LHS asymptote could arise
from differences in the dissipation and particle acceleration
processes, as a cold-proton component is also present in LSC
models (Celotti & Ghisellini 2008). For rapidly flaring blazars,
we take =t 1v,3 as a nominal value for the temporal variability,
though variabilities nearly an order of magnitude shorter have
been observed from, e.g., Mrk 421 and Mrk 501 (Albert
et al. 2007; Fortson et al. 2012). On the other hand, much
slower variability has been often noted, so we also consider

=t 10v,3
3. As a benchmark for the bolometric synchrotron

luminosity, we take =L 145 , which is typical of Mrk 421 and
Mrk 501 (Dermer & Giebels 2016). At the most powerful upper
end, 3C 279 and 3C 454.3 can reach –@L 10 1047 48 erg s−1,
respectively, so we also consider a case with =L 1045

3. We
adopt two values of the photon-loading factor κ, namely, k = 1
(nominal value) and k = 100, which is typical of γ-ray
dominant FSRQs. The LHS results for the latter should be
considered as upper limits on the energetics since
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2, where m = 1 (m me p) for electrons

(protons). The comoving particle energy density
is ḡ p¢ = ¢ ¢u m c N r3 4i i i i b

2 3.
The apparent synchrotron luminosity radiated by the

relativistic particles is given by =L is,

¯d x m s g p¢ ¢N c B 6i i iD
4 2

T
2 2 , where xi is the radiative efficiency

averaged over the energy injection spectrum of particle species
i (Protheroe & Mücke 2001). In its simplest form, this is written
as ( ( ¯ ) )x g= + ¢ -t t1i i isyn, ad

1, where t isyn, is the synchrotron
cooling timescale and = ¢t r cbad .

The energy density in relativistic particles is then given
by ¯x m s d g¢ = ¢ ¢u m c L B c t9 2i i i i v i

2
s,

2
T

2
D
7 4 3 . The jet power

in non-thermal leptons is therefore �y =- - -L x yj
2 e 3 2 5 2

( ( ) )�+ - -L x y1 2 s,e
3 2 1 2 , where ( )� p= 3 3 2

( )�sm c L c B tve
2

s,e T cr
2

s,e . Henceforth, we identify the electron
synchrotron luminosity Ls,e and energy �s,e as the peak
luminosity and peak energy of the low-energy hump of the
SED, i.e., ºL L10es,

45
45 erg s

−1 and � �º -
-10s,e

3
3.

Following a similar approach for the proton component, we
find ( ) h¢ =u m c9p p

2 2 x m s d¢ ¢L r c t eB2 b vs,p p
2 2 3

T
2

D
6 3, where we

used ḡ¢ = ¢ ¢ =r m c eBL p p
2 h-1 ¢rb with .h 1 depending on the

specifics of the acceleration process; for h = 1 this condition
results in the Hillas criterion for confinement (Hillas 1984).
After substitution of xp, the jet power in relativistic
protons is �y =- - -L x yj

p2 3 4 ( ( ) )�+ - -L x y1 2 s,p
3 4 , where

( )� pº m c3 p
2 2 h m sL ec t Bvs,p

2 2
T

2
cr
3 . In this context, the

proton synchrotron luminosity Ls,p is identified as the peak
luminosity of the high-energy hump of the SED, i.e.,

º gL L10s,p
45

,45 erg s
−1.

The jet power carried by the non-relativistic
proton component is ( )p b= ¢ G G -L r c2 1j b

cold 2 r¢ »c2

p ¢ Gr c n m c2 2 2
p
cold

p
2, where ḡ= ¢ ¢�n n u m cp

cold
e e e e

2 under
the assumption of one proton per electron. Thus, the contribution
of the cold-proton component to the total power is

�y =- - -L x yj
2 cold 1 2, where �� p s� m c L ct B27 8 vp

2
s,e T s,e cr

2 .
Finally, we consider the absolute jet power in

radiation, given by k y d=L Lj
r

s,e
2

D
2 (Celotti & Ghisellini

2008; Dermer et al. 2015). The factor k =
( )z y+ + +L L A2 1 3 2 5Cs s,p s,e

2 accounts for the power
in SSC photons from the zs factor, the power in proton
synchrotron radiation, and power in external Compton
emission through AC. Thus, �y k= º- - -L L y yj

r2
s,e

2 2. An
analytical derivation of the conditions that minimize the jet
power is feasible in two limiting regimes:

Case 1: LSC Model. Here we assume that the jet’s
relativistic particle content is purely leptonic, so that � l 0.
For the purposes of the analytical treatment, we neglect Lj

cold

and set x = 1e . Minimization of y- Lj
2 with respect to

x y, results in ( ) ( ) ( )� � �= - -y 12 4 3min
7 16 3 16 1 4 and

( ) ( ) ( )� � �= -x 12 3 4min
13 16 3 4 1 16. The minimum absolute

power is then ( )( ) ( ) ( )� � �y =- L 2 3 12 3 4j
2

,min
1 8 1 2 3 8. The

magnetic field that minimizes jet power in the LSC model
is �k¢ = - -

-
- -B t L0.17 vmin

13 16
,3
5 8

3
3 8

45
1 16 G, and the Doppler

factor �d k= -
-L t59.3 vD,min

7 16
45
3 16

3
1 8

,3
1 8. The Lorentz factor

of electrons powering the low-energy blazar emission is
found to be ¯ �g k¢ ´ -

-� L t5.3 10 ve
4 3 16

3
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45
1 16

,3
3 8, while

the maximum photon energy that can be radiated via
leptonic processes in the black hole frame is given
by ¯ �d g k= ¢ @ -E m c L t1.6 ve,max D,min e e
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3 4
45
1 8 5 8

,3
1 4 TeV. The

minimum jet power is a small fraction of the isotropic
synchrotron luminosity, precisely, y @- L Lj
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,min s,e

�k´ - -
-
-t L2.3 10 v

3 1 8
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45
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3
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power is � L12.5% j,min , since y k´- �L 2.8 10j
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3
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,3
1 4 erg s−1 (see also Ghisellini et al. 2014). The

contributions of the magnetic field and leptons to the total
jet power are, respectively, �L L37.5%j

B
j,min ,min and

�L L50% .j
e

j,min ,min Departure from the minimum power
conditions would also imply �L L 1j

B
j
e (e.g., Tavecchio &

Ghisellini 2016).
Case 2: LHS Model. Here, we assume that the jet’s leptonic

energy content, though sufficient to illuminate the blazar’s
submillimeter–optical part of the SED, is negligible compared
to the combined energy content in the protons, magnetic field,
and photons, so that � l 0. Same as before, we set � l 0
and x = 1p for the derivation of the minimum jet power. Under
these assumptions, we find ( ) ( ) ( )� � �= - -y 6 2 3min

5 14 3 14 1 7

and ( ) ( ) ( )� � �= -x 6 2 3min
4 7 1 7 3 7, and the minimum

absolute power becomes ( ) ( ) ( )� � �y =- L 6 2 3j
2

,min
2 7 3 7 2 7.

The magnetic field and Doppler factor that minimize jet
power in the LHS model are therefore ¢ =Bmin

k-147 4 7 h3 7
g

- -t L Lv,3
4 7

45
4 7

,45
3 7 G and d k= 6.9D,min

5 14 h-1 7

g
- -L t Lv45

5 14
,3
1 7

,45
1 7, respectively. The proton radiative efficiency

is x � 1p for dB and ¢B values close to those that minimize the
jet power. The maximum energy of protons after escaping
from the jet is given by ¯d g= ¢ �E m c 52p,max p

2
D,min p

h-6 7( )k gt L Lv,3 45 ,45
1 7 EeV. The photon energy of the proton

synchrotron radiation emitted in the frame of the black hole
k@ -E 0.9s,p

9 14 h-8 7
g

- -L L tv45
9 14

,45
6 7

,3
1 7 TeV. The minimum

jet power in the LHS model is given by
( hy k@ ´- L t1.6 10j v

2
,min

44
,3 )gL L,45 45

2 7 erg s−1, with only
a weak dependence on the observables. For those minimum
power conditions, it is found that the magnetic field, relativistic
proton, and radiation absolute powers are, respectively,
50%, 33%, and 17% of Lj,min .

3. RESULTS

We present plots of the jet properties for the minimum power
conditions and values of y- L Lj

2
Edd in the ¢B -dD parameter

space. The solutions to the jet-power Equation (1) in the LSC
and LHS limits are plotted in Figures 1 and 2, respectively.
Transition from the LSC to the LHS asymptote could arise
from differences in the dissipation and particle acceleration
processes, as a cold-proton component is also present in LSC
models (Celotti & Ghisellini 2008). For rapidly flaring blazars,
we take =t 1v,3 as a nominal value for the temporal variability,
though variabilities nearly an order of magnitude shorter have
been observed from, e.g., Mrk 421 and Mrk 501 (Albert
et al. 2007; Fortson et al. 2012). On the other hand, much
slower variability has been often noted, so we also consider

=t 10v,3
3. As a benchmark for the bolometric synchrotron

luminosity, we take =L 145 , which is typical of Mrk 421 and
Mrk 501 (Dermer & Giebels 2016). At the most powerful upper
end, 3C 279 and 3C 454.3 can reach –@L 10 1047 48 erg s−1,
respectively, so we also consider a case with =L 1045

3. We
adopt two values of the photon-loading factor κ, namely, k = 1
(nominal value) and k = 100, which is typical of γ-ray
dominant FSRQs. The LHS results for the latter should be
considered as upper limits on the energetics since
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ABSTRACT

The absolute power of a relativistic black hole jet includes the power in the magnetic field, the leptons, the hadrons,
and the radiated photons. A power analysis of a relativistic radio/γ-ray blazar jet leads to bifurcated leptonic
synchrotron-Compton (LSC) and leptohadronic synchrotron (LHS) solutions that minimize the total jet power.
Higher Doppler factors with increasing peak synchrotron frequency are implied in the LSC model. Strong magnetic
fields 2¢B 100 G are found for the LHS model with variability times 110 s3 , in accord with highly magnetized,
reconnection-driven jet models. Proton synchrotron models of2100 GeV blazar radiation can have sub-Eddington
absolute jet powers, but models of dominant GeV radiation in flat spectrum radio quasars require excessive power.

Key words: galaxies: active – gamma rays: galaxies – radiation mechanisms: non-thermal – relativistic processes

1. INTRODUCTION

One of the fascinating current research topics in blazar
astronomy (e.g., see Böttcher et al. 2012; Dermer & Giebels
2016 for review) is the puzzle of the short-timescale γ-ray
variability, not only in BL Lac objects such as Mrk 421
(Fortson et al. 2012), Mrk 501 (Albert et al. 2007), and PKS
2155-304 (Aharonian et al. 2007), but also in flat (radio)
spectrum radio quasars (FSRQs), in particular, PKS 1222+216
(Aleksić et al. 2011) and 3C 279 (The Fermi-LAT Collabora-
tion 2016). These short timescales confound theoretical
expectations that the power of the black hole’s jet is most
efficiently released on times corresponding to the light-travel
time across the Schwarzschild radius of the black hole.
Constraints from the gg opacity of γ-rays passing through
the optical and IR fields in the inner jet place the γ-ray emission
region outside the broad-line region, at the 20.1pc scale or
greater, while the short time variability would imply very
narrow jets. These behaviors are apparently best satisfied in
highly magnetized jets where energy dissipation is most
probably mediated via magnetic reconnection (e.g., Romanova
& Lovelace 1992; Giannios & Spruit 2006; Giannios
et al. 2009).

An analysis of relativistic jet properties required to account
for the apparent luminosity, variability, and peak frequencies of
the characteristic two-hump spectral energy distribution (SED)
of blazars under the condition of minimum total jet power is
presented here. Conventionally, the lower-frequency (radio-to-
UV/X-ray band) is thought to be lepton-synchrotron radiation.
The X-ray/γ-ray emission is made by leptonic Compton
processes in the leptonic synchrotron-Compton (LSC) model
(Dermer et al. 1992; Maraschi et al. 1992; Sikora et al. 1994;
Mastichiadis & Kirk 1997) and by proton synchrotron
emission in the leptohadronic synchrotron (LHS) model
(Aharonian 2000; Mücke & Protheroe 2001) considered here.

The main differences between the two models are that the
magnetic fields and absolute jet powers are roughly an order of
magnitude less and the Doppler factors dD generally larger in
the LSC model than in the LHS model. In rapidly flaring states
with 1t 1v,3 , where the source-frame variability time is
=t t10v v

3
,3 s, the minimum absolute jet-power condition for

blazars in the LSC model implies Gauss or sub-Gauss fields,
d ~ 20D –200, and sub-Eddington jet powers by many orders of
magnitude. In the LHS model for very high energy (VHE;
2100 GeV) emission, the minimum jet-power condition
implies magnetic fields ∼30–200 G and d ~ 4D –30. With such
strong fields, ultrahigh-energy cosmic-ray (UHECR) accelera-
tion is in principle possible, though the absolute jet power,
particularly for high synchrotron luminosity blazars, can
exceed the Eddington luminosity p s= =L GM m c4Edd • p T

´ M1.26 1047
9 of a black hole of mass = :M M M109 •

9 .

2. RELATIVISTIC JET-POWER ANALYSIS

A standard one-zone model is analyzed (Böttcher et al. 2012;
Dermer & Giebels 2016). The emission region is assumed to be
spherical with comoving radius d¢ =r c tb vD moving with
relativistic bulk Lorentz factor bG = - �1 1 12 and
speed �c at an angle θ with respect to our observer’s line of
sight. The Doppler factor [ ( )]d b q y= G - = G-1 cos 2D

1

when G � 1 and q � 1, defining ( ) .y qº + G1 12 .
The absolute jet power for a two-sided jet, which includes

contributions from magnetic field, photons, relativistic elec-
trons, non-relativistic (i.e., cold), and relativistic protons, is
given by (Celotti & Fabian 1993; Zdziarski 2014; Dermer
et al. 2015)

( ) ( )åp b= ¢ G ¢ + ¢ + +
=

L r c u P L L2 , 1j b
i B e p

i i j
r

j
2 2

, ,

cold

where ( )¢ = ¢P u1 3i i for relativistic particles/magnetic field, Lj
r

is the absolute photon luminosity, and Lj
cold is the contribution

of cold protons to the total jet power. The magnetic-field
energy density p¢ = ¢¢u B 8

B
2 , so the magnetic-field component

of the jet power is �y =- L x yj
B2 2 4, where � = c t B 12v

3 2
cr
2 ,

= ¢x B Bcr, the critical magnetic field �= =B m c ecr e
2 3

´4.4 1013 G, and dD is replaced by y.
For simplicity, we assume monoenergetic particle distribu-

tions for both relativistic electrons and protons, namely,
( ) ( ¯ )g d g g¢ = ¢ - ¢N Ne,p e,p e,p e,p e,p . The average comoving energy

(in m ce
2 units) of a synchrotron photon emitted by a particle

with Lorentz factor g¢i ( =i e p, ) is � � d¢ = =i is, s, D
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Leptonic synchro-Compton 
(LSC) jet models:  
• Obtain unique results for magnetic 

field and Doppler factor from 
observables

Lepto-Hadronic synchrotron (LHS) jet 
models: 
• Characterize acceleration efficiency through 

Hillas condition

Minimize power with respect to magnetic field and Doppler factor for 
monoenergetic particle distributions 

Power analysis:

( ) ( )m g¢ ¢B B3 2 icr
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find ( ) h¢ =u m c9p p

2 2 x m s d¢ ¢L r c t eB2 b vs,p p
2 2 3

T
2

D
6 3, where we
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analytical derivation of the conditions that minimize the jet
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Case 2: LHS Model. Here, we assume that the jet’s leptonic

energy content, though sufficient to illuminate the blazar’s
submillimeter–optical part of the SED, is negligible compared
to the combined energy content in the protons, magnetic field,
and photons, so that � l 0. Same as before, we set � l 0
and x = 1p for the derivation of the minimum jet power. Under
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2 7 erg s−1, with only
a weak dependence on the observables. For those minimum
power conditions, it is found that the magnetic field, relativistic
proton, and radiation absolute powers are, respectively,
50%, 33%, and 17% of Lj,min .

3. RESULTS

We present plots of the jet properties for the minimum power
conditions and values of y- L Lj

2
Edd in the ¢B -dD parameter

space. The solutions to the jet-power Equation (1) in the LSC
and LHS limits are plotted in Figures 1 and 2, respectively.
Transition from the LSC to the LHS asymptote could arise
from differences in the dissipation and particle acceleration
processes, as a cold-proton component is also present in LSC
models (Celotti & Ghisellini 2008). For rapidly flaring blazars,
we take =t 1v,3 as a nominal value for the temporal variability,
though variabilities nearly an order of magnitude shorter have
been observed from, e.g., Mrk 421 and Mrk 501 (Albert
et al. 2007; Fortson et al. 2012). On the other hand, much
slower variability has been often noted, so we also consider

=t 10v,3
3. As a benchmark for the bolometric synchrotron

luminosity, we take =L 145 , which is typical of Mrk 421 and
Mrk 501 (Dermer & Giebels 2016). At the most powerful upper
end, 3C 279 and 3C 454.3 can reach –@L 10 1047 48 erg s−1,
respectively, so we also consider a case with =L 1045

3. We
adopt two values of the photon-loading factor κ, namely, k = 1
(nominal value) and k = 100, which is typical of γ-ray
dominant FSRQs. The LHS results for the latter should be
considered as upper limits on the energetics since

2

The Astrophysical Journal Letters, 825:L11 (5pp), 2016 July 1 Petropoulou & Dermer

( ) ( )m g¢ ¢B B3 2 icr
2, where m = 1 (m me p) for electrons

(protons). The comoving particle energy density
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and LHS limits are plotted in Figures 1 and 2, respectively.
Transition from the LSC to the LHS asymptote could arise
from differences in the dissipation and particle acceleration
processes, as a cold-proton component is also present in LSC
models (Celotti & Ghisellini 2008). For rapidly flaring blazars,
we take =t 1v,3 as a nominal value for the temporal variability,
though variabilities nearly an order of magnitude shorter have
been observed from, e.g., Mrk 421 and Mrk 501 (Albert
et al. 2007; Fortson et al. 2012). On the other hand, much
slower variability has been often noted, so we also consider

=t 10v,3
3. As a benchmark for the bolometric synchrotron

luminosity, we take =L 145 , which is typical of Mrk 421 and
Mrk 501 (Dermer & Giebels 2016). At the most powerful upper
end, 3C 279 and 3C 454.3 can reach –@L 10 1047 48 erg s−1,
respectively, so we also consider a case with =L 1045

3. We
adopt two values of the photon-loading factor κ, namely, k = 1
(nominal value) and k = 100, which is typical of γ-ray
dominant FSRQs. The LHS results for the latter should be
considered as upper limits on the energetics since
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a weak dependence on the observables. For those minimum
power conditions, it is found that the magnetic field, relativistic
proton, and radiation absolute powers are, respectively,
50%, 33%, and 17% of Lj,min .

3. RESULTS

We present plots of the jet properties for the minimum power
conditions and values of y- L Lj

2
Edd in the ¢B -dD parameter

space. The solutions to the jet-power Equation (1) in the LSC
and LHS limits are plotted in Figures 1 and 2, respectively.
Transition from the LSC to the LHS asymptote could arise
from differences in the dissipation and particle acceleration
processes, as a cold-proton component is also present in LSC
models (Celotti & Ghisellini 2008). For rapidly flaring blazars,
we take =t 1v,3 as a nominal value for the temporal variability,
though variabilities nearly an order of magnitude shorter have
been observed from, e.g., Mrk 421 and Mrk 501 (Albert
et al. 2007; Fortson et al. 2012). On the other hand, much
slower variability has been often noted, so we also consider

=t 10v,3
3. As a benchmark for the bolometric synchrotron

luminosity, we take =L 145 , which is typical of Mrk 421 and
Mrk 501 (Dermer & Giebels 2016). At the most powerful upper
end, 3C 279 and 3C 454.3 can reach –@L 10 1047 48 erg s−1,
respectively, so we also consider a case with =L 1045

3. We
adopt two values of the photon-loading factor κ, namely, k = 1
(nominal value) and k = 100, which is typical of γ-ray
dominant FSRQs. The LHS results for the latter should be
considered as upper limits on the energetics since
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submillimeter–optical part of the SED, is negligible compared
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We present plots of the jet properties for the minimum power
conditions and values of y- L Lj
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Edd in the ¢B -dD parameter

space. The solutions to the jet-power Equation (1) in the LSC
and LHS limits are plotted in Figures 1 and 2, respectively.
Transition from the LSC to the LHS asymptote could arise
from differences in the dissipation and particle acceleration
processes, as a cold-proton component is also present in LSC
models (Celotti & Ghisellini 2008). For rapidly flaring blazars,
we take =t 1v,3 as a nominal value for the temporal variability,
though variabilities nearly an order of magnitude shorter have
been observed from, e.g., Mrk 421 and Mrk 501 (Albert
et al. 2007; Fortson et al. 2012). On the other hand, much
slower variability has been often noted, so we also consider

=t 10v,3
3. As a benchmark for the bolometric synchrotron

luminosity, we take =L 145 , which is typical of Mrk 421 and
Mrk 501 (Dermer & Giebels 2016). At the most powerful upper
end, 3C 279 and 3C 454.3 can reach –@L 10 1047 48 erg s−1,
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3. We
adopt two values of the photon-loading factor κ, namely, k = 1
(nominal value) and k = 100, which is typical of γ-ray
dominant FSRQs. The LHS results for the latter should be
considered as upper limits on the energetics since
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2, where ḡ= ¢ ¢�n n u m cp

cold
e e e e

2 under
the assumption of one proton per electron. Thus, the contribution
of the cold-proton component to the total power is

�y =- - -L x yj
2 cold 1 2, where �� p s� m c L ct B27 8 vp

2
s,e T s,e cr

2 .
Finally, we consider the absolute jet power in

radiation, given by k y d=L Lj
r

s,e
2

D
2 (Celotti & Ghisellini

2008; Dermer et al. 2015). The factor k =
( )z y+ + +L L A2 1 3 2 5Cs s,p s,e

2 accounts for the power
in SSC photons from the zs factor, the power in proton
synchrotron radiation, and power in external Compton
emission through AC. Thus, �y k= º- - -L L y yj

r2
s,e

2 2. An
analytical derivation of the conditions that minimize the jet
power is feasible in two limiting regimes:

Case 1: LSC Model. Here we assume that the jet’s
relativistic particle content is purely leptonic, so that � l 0.
For the purposes of the analytical treatment, we neglect Lj

cold

and set x = 1e . Minimization of y- Lj
2 with respect to

x y, results in ( ) ( ) ( )� � �= - -y 12 4 3min
7 16 3 16 1 4 and

( ) ( ) ( )� � �= -x 12 3 4min
13 16 3 4 1 16. The minimum absolute

power is then ( )( ) ( ) ( )� � �y =- L 2 3 12 3 4j
2

,min
1 8 1 2 3 8. The

magnetic field that minimizes jet power in the LSC model
is �k¢ = - -

-
- -B t L0.17 vmin

13 16
,3
5 8

3
3 8

45
1 16 G, and the Doppler

factor �d k= -
-L t59.3 vD,min

7 16
45
3 16

3
1 8

,3
1 8. The Lorentz factor

of electrons powering the low-energy blazar emission is
found to be ¯ �g k¢ ´ -

-� L t5.3 10 ve
4 3 16

3
5 8

45
1 16

,3
3 8, while

the maximum photon energy that can be radiated via
leptonic processes in the black hole frame is given
by ¯ �d g k= ¢ @ -E m c L t1.6 ve,max D,min e e

2
3

3 4
45
1 8 5 8

,3
1 4 TeV. The

minimum jet power is a small fraction of the isotropic
synchrotron luminosity, precisely, y @- L Lj

2
,min s,e

�k´ - -
-
-t L2.3 10 v

3 1 8
,3

1 4
45

3 8
3
1 4, while the absolute radiated

power is � L12.5% j,min , since y k´- �L 2.8 10j
r2
,min

41 1 8

�-
-L tv45

5 8
3
1 4

,3
1 4 erg s−1 (see also Ghisellini et al. 2014). The

contributions of the magnetic field and leptons to the total
jet power are, respectively, �L L37.5%j

B
j,min ,min and

�L L50% .j
e

j,min ,min Departure from the minimum power
conditions would also imply �L L 1j

B
j
e (e.g., Tavecchio &

Ghisellini 2016).
Case 2: LHS Model. Here, we assume that the jet’s leptonic

energy content, though sufficient to illuminate the blazar’s
submillimeter–optical part of the SED, is negligible compared
to the combined energy content in the protons, magnetic field,
and photons, so that � l 0. Same as before, we set � l 0
and x = 1p for the derivation of the minimum jet power. Under
these assumptions, we find ( ) ( ) ( )� � �= - -y 6 2 3min

5 14 3 14 1 7

and ( ) ( ) ( )� � �= -x 6 2 3min
4 7 1 7 3 7, and the minimum

absolute power becomes ( ) ( ) ( )� � �y =- L 6 2 3j
2

,min
2 7 3 7 2 7.

The magnetic field and Doppler factor that minimize jet
power in the LHS model are therefore ¢ =Bmin

k-147 4 7 h3 7
g

- -t L Lv,3
4 7

45
4 7

,45
3 7 G and d k= 6.9D,min

5 14 h-1 7

g
- -L t Lv45

5 14
,3
1 7

,45
1 7, respectively. The proton radiative efficiency

is x � 1p for dB and ¢B values close to those that minimize the
jet power. The maximum energy of protons after escaping
from the jet is given by ¯d g= ¢ �E m c 52p,max p

2
D,min p

h-6 7( )k gt L Lv,3 45 ,45
1 7 EeV. The photon energy of the proton

synchrotron radiation emitted in the frame of the black hole
k@ -E 0.9s,p

9 14 h-8 7
g

- -L L tv45
9 14

,45
6 7

,3
1 7 TeV. The minimum

jet power in the LHS model is given by
( hy k@ ´- L t1.6 10j v

2
,min

44
,3 )gL L,45 45

2 7 erg s−1, with only
a weak dependence on the observables. For those minimum
power conditions, it is found that the magnetic field, relativistic
proton, and radiation absolute powers are, respectively,
50%, 33%, and 17% of Lj,min .

3. RESULTS

We present plots of the jet properties for the minimum power
conditions and values of y- L Lj

2
Edd in the ¢B -dD parameter

space. The solutions to the jet-power Equation (1) in the LSC
and LHS limits are plotted in Figures 1 and 2, respectively.
Transition from the LSC to the LHS asymptote could arise
from differences in the dissipation and particle acceleration
processes, as a cold-proton component is also present in LSC
models (Celotti & Ghisellini 2008). For rapidly flaring blazars,
we take =t 1v,3 as a nominal value for the temporal variability,
though variabilities nearly an order of magnitude shorter have
been observed from, e.g., Mrk 421 and Mrk 501 (Albert
et al. 2007; Fortson et al. 2012). On the other hand, much
slower variability has been often noted, so we also consider

=t 10v,3
3. As a benchmark for the bolometric synchrotron

luminosity, we take =L 145 , which is typical of Mrk 421 and
Mrk 501 (Dermer & Giebels 2016). At the most powerful upper
end, 3C 279 and 3C 454.3 can reach –@L 10 1047 48 erg s−1,
respectively, so we also consider a case with =L 1045

3. We
adopt two values of the photon-loading factor κ, namely, k = 1
(nominal value) and k = 100, which is typical of γ-ray
dominant FSRQs. The LHS results for the latter should be
considered as upper limits on the energetics since
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Derived blazar properties minimizing jet power

photohadronic processes, which may increase the proton
radiative efficiency, have not been included in our treatment.
Finally, we adopted h = 1 in the LHS model since larger η
values would simply increase the jet power.

Restrictions on the value of dD due to gg opacity in the
source are not severe in the LSC model. The minimum Doppler
factor to allow the escape of γ-ray photons with source-frame
energy ºE E 1 TeV1,TeV 1 is (Dermer & Menon 2009)

[( )∣ ]d n@gg
n

-L E t16 vD p,45 1,TeV ,3
1 1 6, where we appproximated

the target photons by a flat n nL spectrum with value as
measured at its peak ( )∣n nL p. This greatly overestimates the
target photon density and therefore exceeds the actual value of
dggD in a more careful calculation. We note that in Figures 1 and
2 a more accurate calculation of tgg was performed under the
assumption of a log-parabola electron distribution with
curvature parameter =b 1 2 (Dermer et al. 2014).

Figure 1. Left: jet properties in the minimum jet-power configuration as a function of the peak synchrotron frequency n n= 10p
14

p,14 Hz in the LSC model. The peak
synchrotron frequencies used to identify blazar classes (Abdo et al. 2010; Giommi et al. 2012a) are also indicated. Nominal values are k= = =L t 1v45 ,3 . Other cases
use nominal values except for the parameter given in the legend. Right: the ¢B -dD parameter space of the jet power for the nominal parameters and n = ´1.2 10p,14

3.
The color coding and the black contours denote ( )y- L Llog j

2
Edd . White contours denote the peak photon energy of the γ-ray component ( )Elog 1 TeVC,p .

Attenuation due to intrinsic gg absorption becomes relevant for certain parameters (dashed white curves). The yellow cross denotes the analytically
derived ( )d B,D,min min .

Figure 2. Left: jet properties in the minimum jet-power configuration for the LHS model as a function of the apparent isotropic bolometric lepton-synchrotron
luminosity ºL Ls,e . Right: same as in Figure 1, but for the LHS model. The white contours in ¢B -dD denote ( )Elog 1 TeVs,p .
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Figure 2. Left: jet properties in the minimum jet-power configuration for the LHS model as a function of the apparent isotropic bolometric lepton-synchrotron
luminosity ºL Ls,e . Right: same as in Figure 1, but for the LHS model. The white contours in ¢B -dD denote ( )Elog 1 TeVs,p .
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Figure 2. Left: jet properties in the minimum jet-power configuration for the LHS model as a function of the apparent isotropic bolometric lepton-synchrotron
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Comparison of derived properties with numerical calculations

photohadronic processes, which may increase the proton
radiative efficiency, have not been included in our treatment.
Finally, we adopted h = 1 in the LHS model since larger η
values would simply increase the jet power.

Restrictions on the value of dD due to gg opacity in the
source are not severe in the LSC model. The minimum Doppler
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Figure 2. Left: jet properties in the minimum jet-power configuration for the LHS model as a function of the apparent isotropic bolometric lepton-synchrotron
luminosity ºL Ls,e . Right: same as in Figure 1, but for the LHS model. The white contours in ¢B -dD denote ( )Elog 1 TeVs,p .
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Case 1: LSC Model. The values of jet properties in the LSC
model are plotted as a function of peak synchrotron frequency
n n= 10p

14
p,14 Hz for different parameter values in Figure 1

(left). The solid lines show quantities in the minimum jet-power
condition for nominal parameters k= = =L t 1v45 ,3 . Other
cases include a slowly varying jet, with =t 10v,3

3, a powerful
jet with =L 1045

3, and a jet with strong γ-ray dominance
defined by k = 100, with other parameters kept equal to their
nominal values. The Doppler factors that minimize jet power
lie between»10 and a few hundred and scale as nµ p,14

1 8 . For the
nominal values, 1 1d20 60D,min and –¢ �B 0.1 10 G. In
comparison, Doppler factors and magnetic fields are smaller
for the much bigger blob implied by =t 10 sv

6 . Indeed,
10–100 mG fields and Doppler factors ∼10–20 are typical
values in SSC models of BL Lac blazars (Ghisellini et al. 2010;
Murase et al. 2012). Thus, in the minimum power condition,
smaller emitting regions with stronger fields require higher
Doppler factors. Depending on the availability of internal and
external soft target photon fields, the maximum electron
energy, Ee,max , usually defines the peak photon energy of the
high-energy hump of the SED, i.e., nµEC,p p,14

3 4 , mirroring
some features of the much discussed blazar sequence (Fossati
et al. 1998; Giommi et al. 2012b). The jet-power fraction,
characterized as the ratio of the minimum absolute jet power
and the apparent isotropic synchrotron luminosity, is always
less than 10%, reaching 0.1% for =L 1048 erg s−1 and LSP
sources. The jet-power fraction decreases with increasing peak
synchrotron frequency, making the HSP objects more radia-
tively efficient. Powerful blazars, in spite of their better
efficiency, have higher absolute jet powers, but still much less
than LEdd.

Figure 1 (right) shows the ¢B -dD parameter space of
Lj for an HSP blazar with n = ´1.2 10p,14

3 and the
nominal parameter values = =L t 1v45 ,3 . Black contours of

( )y- L Llog j
2

Edd are overplotted. For a monoenergetic
electron distribution, the peak energy of the γ-ray component
is [ ¯ ( ) ¯ ]�d g gº ¢ ¢E m cmin , 4 3C,p D e e

2
e

2. Different values of
( )Elog 1 TeVpC, are shown with white contours whose dashed

part denotes parameters that lead to the attenuation of photons
with that energy. The yellow cross, which marks the
analytically derived ( )d B,D,min min after setting =L 0j

cold and
x = 1e , appears displaced from the actual minimum of the full
expression for Lj due to a lower radiative efficiency.

Case 2: LHS Model. The dependence of different quantities in
the LHS model for conditions that minimize the jet power are
presented in Figure 2 (left). In the calculations, we assume that

=L Ls,p or =L L100s,p (i.e., k » 1 or 100). Several important
features stand out: (i) the magnetic field is typically large,

2¢B 1G up to ∼200 G, much greater than that found in the LSC
model; (ii) the proton synchrotron photons are radiated at VHE
from blazars with modest synchrotron luminosities ( 1L 145 )
and at multi-TeV energies for powerful blazars; (iii) the Doppler
factors are in the range ≈1–100, with the more powerful blazars
having larger d ;D,min (iv) the maximum energy of escaping
protons is21020 eV for powerful blazars with –2L 10 10045 , in
line with different estimates of maximum particle energies in
relativistic flows; and (v) the ratio L Lj,min s,e is larger by 1–2
orders of magnitude than that for the LSC model for

–�L 1 1045
3. Yet, compared to the Eddington luminosity, the

LHS model is 1 L0.1 Edd, except for powerful slowly varying
blazars with –~E 0.01 0.1 GeVs,p . Substitution of η in the

expression of Lj,min by Es,p leads to �Lj,min

( )k´ g
- -L L t E3 10 10 GeVv

45 1 8
45
1 8

,45
1 2

,3
9 28

s,p
2 1 4 erg s−1, or

�L 10j,min
48 erg s -1 for k = 100, =L 1045 , =gL 10,45

3,
and =t 10v,3

3.
Figure 2 (right) shows the parameter space of Lj for an HSP

blazar with n = ´1.2 10p,14
3 and the nominal parameter

values = =L t 1v45 ,3 . The parameter space in the LHS model
is dramatically different than that for the LSC scenario.
Solutions that satisfy both <L Lj Edd and –~E 0.1 1s,p TeV are
possible for a much more limited range of values in the LHS
model. The minimum jet power is obtained for ¢ ~B 100 G and
modest Doppler factors ∼10–20. For ( d¢B ,min D,min ) ∼1 TeV
γ-ray photons cannot escape the blob due to gg attenuation.
Departure from the minimum power conditions (e.g.,

1¢B 50 G and 2d 13D ) would be necessary for reproducing
the SED of TeV blazars. Interestingly, the required jet power
would be 110 times higher than Lj,min .

4. DISCUSSION

The minimum absolute jet power as a fraction of the
Eddington luminosity in the LSC scenario is

( )�y k@ ´- - -
-
-L

L
t L M1.4 10 , 2j
v

2 ,min
LSC

Edd

5 1 8
,3

1 4
45
5 8

9
1

3
1 4

to be compared with

( ) ( )hy k@ g
- - -L

L
t L L M10 3j
v

2 ,min
LHS

Edd

3
,3 45 ,45

2 7
9

1

for the LHS model. The latter predicts, for the minimum power
conditions, peak photon energies above 1 TeV for powerful
blazars. Thus, the minimum jet power for VHE photon
production in blazars is a small fraction of the Eddington
luminosity in leptohadronic scenarios where the TeV γ-rays are
produced by proton synchrotron radiation. Given that the
chances of viewing directly down the jet axis are small, the
constraints become more severe especially for the LHS model
when y > 1 for VHE γ-ray production. Compared to proton
synchrotron models, leptohadronic models of HSP blazars,
where the γ-ray emission is the result of hadronic-initiated
cascades, require –2L 10 10j

47 48 erg s−1 (Cerruti et al. 2015;
Petropoulou et al. 2015), i.e., super-Eddington luminosities. In
this regard, the LHS model is most energetically favorable for
HSP blazars, many of which display extreme variability.
The power to produce dominant GeV emission, as seen in

FSRQs, exceeds LEdd by 1–2 orders of magnitude, as
concluded in Zdziarski & Böttcher (2015) based on a sample
composed of γ-ray powerful, LSP, and ISP blazars, and by
Petropoulou & Dimitrakoudis (2015) for 3C 273. High jet
powers are unavoidable in the LHS scenario of these blazars
(see also Sikora et al. 2009) not so much due to higher γ-ray
luminosities, but because their lower γ-ray peak energies fall in
the ∼GeV regime. As lower-energy protons produce synchro-
tron radiation less efficiently, higher proton energy densities
would be, in turn, required, thus pushing the total jet power to
the super-Eddington regime.
The LHS model is energetically disfavored for slowly

varying, powerful blazars. Still, rapidly variable VHE γ-ray
emission in FSRQs could have a proton synchrotron origin, as
shown here. For BL Lac sources, ultra-short variability in the
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luminosities, but because their lower γ-ray peak energies fall in
the ∼GeV regime. As lower-energy protons produce synchro-
tron radiation less efficiently, higher proton energy densities
would be, in turn, required, thus pushing the total jet power to
the super-Eddington regime.
The LHS model is energetically disfavored for slowly

varying, powerful blazars. Still, rapidly variable VHE γ-ray
emission in FSRQs could have a proton synchrotron origin, as
shown here. For BL Lac sources, ultra-short variability in the
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Numerical calculation of jet power as a function of Doppler factor and B’

photohadronic processes, which may increase the proton
radiative efficiency, have not been included in our treatment.
Finally, we adopted h = 1 in the LHS model since larger η
values would simply increase the jet power.

Restrictions on the value of dD due to gg opacity in the
source are not severe in the LSC model. The minimum Doppler
factor to allow the escape of γ-ray photons with source-frame
energy ºE E 1 TeV1,TeV 1 is (Dermer & Menon 2009)

[( )∣ ]d n@gg
n

-L E t16 vD p,45 1,TeV ,3
1 1 6, where we appproximated

the target photons by a flat n nL spectrum with value as
measured at its peak ( )∣n nL p. This greatly overestimates the
target photon density and therefore exceeds the actual value of
dggD in a more careful calculation. We note that in Figures 1 and
2 a more accurate calculation of tgg was performed under the
assumption of a log-parabola electron distribution with
curvature parameter =b 1 2 (Dermer et al. 2014).

Figure 1. Left: jet properties in the minimum jet-power configuration as a function of the peak synchrotron frequency n n= 10p
14

p,14 Hz in the LSC model. The peak
synchrotron frequencies used to identify blazar classes (Abdo et al. 2010; Giommi et al. 2012a) are also indicated. Nominal values are k= = =L t 1v45 ,3 . Other cases
use nominal values except for the parameter given in the legend. Right: the ¢B -dD parameter space of the jet power for the nominal parameters and n = ´1.2 10p,14

3.
The color coding and the black contours denote ( )y- L Llog j

2
Edd . White contours denote the peak photon energy of the γ-ray component ( )Elog 1 TeVC,p .

Attenuation due to intrinsic gg absorption becomes relevant for certain parameters (dashed white curves). The yellow cross denotes the analytically
derived ( )d B,D,min min .

Figure 2. Left: jet properties in the minimum jet-power configuration for the LHS model as a function of the apparent isotropic bolometric lepton-synchrotron
luminosity ºL Ls,e . Right: same as in Figure 1, but for the LHS model. The white contours in ¢B -dD denote ( )Elog 1 TeVs,p .
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Energetics excessive for FSRQs (but not BL Lacs) for hadronic synchrotron model 
BL Lacs remain favored candidate UHECR sources

Leptonic Blazar Model Lepto-Hadronic Blazar Model
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Dermer & Razzaque (2010)

GRB 
observations

UHECR 
requirements



Summary

Outlined two new approaches to blazar modelling: 

1) Near-equipartition approach using log-parabola function for 
electron energy distribution 

2) Analysis based on minimizing jet power

For 1), explains the spectral index diagrams and makes predictions for leptonic 
models correlating widths of synchrotron component and Compton components: 
but spectral modelling shows some systems are far from equipartition  

For 2), strong magnetic fields B >100 G are found for the LHS model with 
variability times =103 s, in accord with highly magnetized, reconnection-driven 
jet models. Proton synchrotron models of >100 GeV radiation can be sub-
Eddington, but models of GeV radiation in FSRQs require excessive power 

1) Method to determine hadronic content from accurate synchrotron 
and ϒ-ray SEDs 

2) Energetics rules out hadronic synchrotron  model for FSRQs but not 
BL Lacs, consistent with BL Lacs being the sources of the UHECR


