Cosmic Rays & Multi-Messenger Opportunities in Starbursts

Tova M. Yoast-Hull
Canadian Institute for Theoretical Astrophysics

RAPP Center Inauguration, Ruhr-Universität Bochum
22 September 2016
In This Talk ...

- Why Starburst Galaxies?
- Modeling Cosmic Rays
 - Radio, Gamma-Rays, & Neutrinos
- Lessons from Starbursts
 - Cosmic Ray Connections to Galaxy Evolution
I. What's Up With Starburst Galaxies
High Energy Cosmic Rays

- What are the sources of high energy cosmic rays?
- Where are astrophysical neutrinos being produced?
- How does environment affect cosmic ray populations?
CMZs in starburst galaxies are characterized by:

- Radius ~ 100 to 300 pc
- Large amounts of dense molecular gas
- Strong magnetic fields and intense radiation fields
- High and highly variable star-formation rates
Star Formation in CMZs

- Kennicutt-Schmidt correlation breaks down in CMZs
 - SFR in Galactic Center is down by factor of ~10 from predicted
- Many nearby starbursts with similar gas densities and SFRs
 - Only a couple detected in gamma-rays

Starburst Galaxy: NGC 253

Galactic Center
High Redshift Analogues

- Star formation at high redshift galaxies is very clumpy.
 - Can study nearby galaxies to learn about similar environments.
II. A History of Cosmic Ray Models
1980s & 1990s: New Discoveries

- First investigations into the far-infrared – radio correlation (de Jong+ 1985, Helou+ 1985)

- EGRET launches in 1991

EGRET all-sky map of gamma rays above 100 MeV
Early Cosmic Ray Models

● **Late 1980s:**
 − FIR-radio correlation
 − New radio observations of starbursts
 − Minimum energy magnetic field estimates

● **Early 1990s:**
 − CR propagation models connected to radio emission from starbursts
 − Predictions for detection of M82 with EGRET in gamma-rays

Early Multiwavelength Observations

- Radio observations of CMZs
- Gamma-ray upper-limits from EGRET.

Basics of Cosmic Ray Models

- CR transport equation:
 \[
 \frac{N(E)}{\tau(E)} - \frac{d}{dE} \left[b(E)N(E) \right] - Q(E) = 0
 \]

- CR source function:
 \[
 \int Q(E)E dE = \frac{\eta \nu_{SNR} E_{51}}{V}
 \]

- CR lifetimes:
 \[
 \tau^{-1} = \tau_{\text{diff}}^{-1} + \tau_{\text{adv}}^{-1} + \tau_{\text{loss}}^{-1}
 \]

- Secondary CRs / γ-rays, ν:
 \[
 q(E) \propto \int \frac{d\sigma(E, E_\nu)}{dE_\nu} N_\nu(E_\nu) dE_\nu
 \]
Cosmic Rays & Gamma-Rays in M82

Yoast-Hull+, 2013, 2015

Tova M. Yoast-Hull
FIR – Gamma-Ray Correlation

Cosmic Rays & Neutrinos

Waxman 2015, arXiv 1511.00815

Bechtol+ 2015, arXiv 1511.00688
III. A Window into Galaxy Evolution
Energy Densities in CMZs

Tova M. Yoast-Hull
September 2016, 18 / 21
SNRs in our Galaxy accelerate CRs up to $\sim 10^{14}$ eV energies.

Magnetic fields in starbursts range from $\sim 100 \, \mu$G to ~ 10 mG.
Galactic Feedback:
- ISM heating by cosmic rays
- Cosmic ray driven winds

FIR-Radio Correlation
Summary

- **Starburst Galaxies:**
 - Sites of intense star-formation and high rates of cosmic ray interactions.
 - Potentially sources of very high energy to ultra high energy CRs and astrophysical neutrinos.

- **Radio + Gamma-Rays:**
 - Combination of these observations are very powerful in constraining CR & ISM properties.
 - Many new telescopes (CTA, SKA) will be important for CR studies.

- **Galaxy Evolution:**
 - Nearby galaxy examples demonstrate impact of CRs on ISM & IGM; useful for high redshift studies.