Cosmic Rays & Multi-Messenger pportunities in Starbursts

Tova M. Yoast-Hull Canadian Institute for Theoretical Astrophysics

RAPP Center Inauguration, Ruhr–Universität Bochum 22 September 2016

In This Talk ...

- Why Starburst Galaxies?
- Modeling Cosmic Rays
 - Radio, Gamma-Rays, & Neutrinos
- Lessons from Starbursts
 - Cosmic Ray Connections to Galaxy Evolution

I. What's Up With Starburst Galaxies

High Energy Cosmic Rays

- What are the sources of high energy cosmic rays?
- Where are astrophysical neutrinos being produced?
- How does environment affect cosmic ray populations?

Tova M. Yoast-Hull

September 2016, 4 / 21

Central Molecular Zones

- CMZs in starburst galaxies are characterized by:
 - Radius ~ 100 to 300 pc
 - Large amounts of dense molecular gas
 - Strong magnetic fields and intense radiation fields
 - High and highly variable star-formation rates

Nuclear Starburst Galaxy: M83

Tova M. Yoast-Hull

September 2016, 5 / 21

Star Formation in CMZs

- Kennicutt-Schmidt correlation breaks down in CMZs
 - SFR in Galactic Center is down by factor of ~10 from predicted
- Many nearby starbursts with similar gas densities and SFRs
 - Only a couple detected in gamma-rays

Tova M. Yoast-Hull

Starburst Galaxy: NGC 253

Galactic Center September 2016, 6 / 21

High Redshift Analogues

- Star formation at in high redshift galaxies is very clumpy.
 - Can study nearby galaxies to learn about similar environments.

II. A History of Cosmic Ray Models

1980s & 1990s: New Discoveries

Helou+ 1985, ApJL, 298

 First investigations into the far-infrared – radio correlation (de Jong+ 1985, Helou+ 1985)

• EGRET launches in 1991

EGRET all-sky map of gamma rays above 100 MeV

September 2016, 9 / 21

Early Cosmic Ray Models

- Late 1980s:
 - FIR-radio correlation
 - New radio observations of starbursts
 - Minimum energy magnetic field estimates
- Early 1990s:
 - CR propagation models connected to radio emission from starbursts
 - Predictions for detection of M82 with EGRET in gamma-rays

September 2016, 10 / 21

Early Multiwavelength Observations

- Radio observations of CMZs
- Gamma-ray upper-limits from EGRET.

Tova M. Yoast-Hull

September 2016, 11 / 21

Basics of Cosmic Ray Models

- CR transport equation: $\frac{N(E)}{\tau(E)} - \frac{d}{dE} [b(E)N(E)] - Q(E) = 0$
- CR source function:
- $\int Q(E) E dE = \frac{\eta v_{SNR} E_{51}}{V}$ CR lifetimes:
 - $\tau^{-1} = \tau_{diff}^{-1} + \tau_{adv}^{-1} + \tau_{loss}^{-1}$
- Secondary CRs / γ-rays, ν:

$$q(E) \propto \int \frac{d\sigma(E, E_p)}{dE_p} N_p(E_p) dE_p$$

September 2016, 12 / 21

Cosmic Rays & Radio in M82

Tova M. Yoast-Hull

September 2016, 13 / 21

Cosmic Rays & Gamma-Rays in M82

Tova M. Yoast-Hull

September 2016, 14 / 21

FIR – Gamma–Ray Correlation

Tova M. Yoast-Hull

September 2016, 15 / 21

Cosmic Rays & Neutrinos

Tova M. Yoast-Hull

September 2016, 16 / 21

III. A Window into Galaxy Evolution

Energy Densities in CMZs

Very High Energy Cosmic Rays

- SNRs in our Galaxy accelerate CRs up to ~10¹⁴ eV energies.
- Magnetic fields in starbursts range from ~ 100 µG to ~10 mG.

September 2016, 19 / 21

Cosmic Rays & Feedback

- Galactic Feedback:
 ISM heating by cosmic rays
 - Cosmic ray driven winds

September 2016, 20 / 21

• FIR-Radio Correlation

Summary

- Starburst Galaxies:
 - Sites of intense star-formation and high rates of cosmic ray interactions.
 - Potentially sources of very high energy to ultra high energy CRs and astrophysical neutrinos.
- Radio + Gamma-Rays:
 - Combination of these observations are very powerful in constraining CR & ISM properties.
 - Many new telescopes (CTA, SKA) will be important for CR studies.
- Galaxy Evolution:
 - Nearby galaxy examples demonstrate impact of CRs on ISM & IGM; useful for high redshift studies.

September 2016, 21 / 21