The physics of propagating TeV gamma-rays: From plasma instabilities to cosmological structure formation

Christoph Pfrommer<sup>1</sup>

with

Avery E. Broderick, Phil Chang, Ewald Puchwein, Mohamad Shalaby, Astrid Lamberts, Volker Springel

<sup>1</sup>Heidelberg Institute for Theoretical Studies, Germany

RAPP Center Inauguration meeting, Bochum - 2016

#### Motivation A new link between high-energy astrophysics and cosmological structure formation



#### Introduction to Blazars

- active galactic nuclei (AGN)
- propagating gamma rays
- plasma physics

#### Cosmological Consequences

- unifying blazars with AGN
- gamma-ray background
- thermal history of the Universe
- Lyman- $\alpha$  forest
- formation of dwarf galaxies



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

#### Active galactic nucleus (AGN)



- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

#### Active galactic nucleus at a cosmological distance



Quasar 3C175 at  $z \simeq 0.8$ : jet extends 10<sup>6</sup> light years across

- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets
- AGNs are among the most luminous sources in the universe → discovery of distant objects



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

### Unified model of active galactic nuclei



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

### Unified model of active galactic nuclei



Blazar: jet aligned with line-of-sight



Blazars Gamma-ray sky Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

## TeV gamma-ray observations



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

## The TeV gamma-ray sky

There are several classes of TeV sources:

- Galactic pulsars, BH binaries, supernova remnants
- Extragalactic mostly blazars, two starburst galaxies



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

### Annihilation and pair production





Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

#### Annihilation and pair production





Active galactic nuclei **Propagating**  $\gamma$  rays Plasma instabilities

#### Inverse Compton cascades





Active galactic nuclei **Propagating**  $\gamma$  rays Plasma instabilities

#### Inverse Compton cascades



each TeV point source should also be a GeV point source!



Blazars Gamma-ray sky

# Propagating $\gamma$ rays

#### What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo



Blazars Active gal Gamma-ray sky Propagati tructure formation Plasma in

Active galactic nucle **Propagating**  $\gamma$  rays Plasma instabilities

### What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!** 



Active galactic nuclei **Propagating**  $\gamma$  rays Plasma instabilities

#### Inverse Compton cascades





Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

### Extragalactic magnetic fields?





Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

### Extragalactic magnetic fields?



- GeV point source diluted --> weak "pair halo"
- stronger B-field implies more deflection and dilution, gamma-ray non-detection  $\longrightarrow B \gtrsim 10^{-16} \,\text{G}$  primordial fields?



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

### Extragalactic magnetic fields?



• problem for unified AGN model: no increase in comoving blazar density with redshift allowed (as seen in other AGNs) since other-wise, extragalactic GeV background would be overproduced!



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

## What else could happen?





Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

#### **Plasma** instabilities



 pair plasma beam propagating through the intergalactic medium



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

#### Plasma instabilities

• pair beam

intergalactic medium (IGM)



- this configuration is unstable to plasma instabilities
- characteristic frequency and length scale of the problem:

$$\omega_{
ho} = \sqrt{rac{4\pi e^2 n_e}{m_e}}, \qquad \lambda_{
ho} = \left. rac{c}{\omega_{
ho}} 
ight|_{ar{
ho}(z=0)} \sim 10^8\,{
m cm}$$



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

#### Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

- initially homogeneous beam-e<sup>-</sup>: attractive (repulsive) force by potential maxima (minima)
- $e^-$  attain lowest velocity in potential minima ightarrow bunching up
- $e^+$  attain lowest velocity in potential maxima ightarrow bunching up



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

#### Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

- beam-e<sup>+</sup>/e<sup>-</sup> couple in phase with the background perturbation: enhances background potential
- stronger forces on beam- $e^+/e^- 
  ightarrow$  positive feedback

 $\bullet \ \text{exponential wave-growth} \rightarrow \text{instability}$ 



Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

## **Oblique** instability

- k oblique to v<sub>beam</sub>: real word perturbations don't choose "easy" alignment = ∑ all orientations
- oblique grows faster than two-stream: *E*-fields can easier deflect ultra-relativistic particles than change their parallel velocities







Bret (2009), Bret+ (2010)

Active galactic nuclei Propagating  $\gamma$  rays Plasma instabilities

## Beam physics – growth rates



Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4 \, \gamma \, rac{\textit{n}_{ extsf{beam}}}{\textit{n}_{ extsf{IGM}}} \, \omega_{
m p}$$

- oblique instability beats inverse Compton cooling by factor 10-100
- **assume** that instability grows at *linear* rate up to saturation

Jnified scenario Blazar evolution Gamma-ray background

#### TeV emission from blazars – a new paradigm

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \\ \text{plasma instabilities} \end{cases}$$

absence of  $\gamma_{\rm GeV}{\rm 's}$  has significant implications for  $\ldots$ 

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars



Unified scenario Blazar evolution Gamma-ray background

### TeV blazar luminosity density: today



- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ( $\eta_B \sim 0.2\%$ ) of that of quasars!



Unified scenario Blazar evolution Gamma-ray background

### Unified TeV blazar-quasar model



#### Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag guasar activity
- $\rightarrow$  assume that they trace each other for all redshifts!



Unified scenario Blazar evolution Gamma-ray background

### How many TeV blazars are there?



→ use all-sky survey of the GeV gamma-ray sky: *Fermi* gamma-ray space telescope



Unified scenario Blazar evolution Gamma-ray background

### How many TeV blazars are there?





Unified scenario Blazar evolution Gamma-ray background

### How many TeV blazars are there?





Unified scenario Blazar evolution Gamma-ray background

#### How many TeV blazars are there?





Unified scenario Blazar evolution Gamma-ray background

## Redshift distribution of *Fermi* hard $\gamma$ -ray blazars



 $\rightarrow$  evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!

Unified scenario Blazar evolution Gamma-ray background

## $\log N - \log S$ distribution of *Fermi* hard $\gamma$ -ray blazars



 $\rightarrow$  predicted and observed flux distributions of hard *Fermi* blazars between 10 GeV and 500 GeV are indistinguishable!



Unified scenario Blazar evolution Gamma-ray background

#### How many TeV blazars are there?





Unified scenario Blazar evolution Gamma-ray background

## Extragalactic gamma-ray background



 $\rightarrow$  evolving population of hard blazars provides excellent match to latest EGRB by Fermi for E  $\gtrsim$  3 GeV



Unified scenario Blazar evolution Gamma-ray background

#### Extragalactic gamma-ray background



ightarrow the signal at 10 (100) GeV is dominated by redshifts  $z \sim$  1.2 ( $z \sim$  0.6)

Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

#### TeV emission from blazars – a new paradigm

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \\ \text{plasma instabilities} \rightarrow & \text{IGM heating} \end{cases}$$

#### absence of $\gamma_{\rm GeV}{\rm 's}$ has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains Fermi's γ-ray background and blazar number counts

additional IGM heating has significant implications for ....

- thermal history of the IGM: Lyman- $\alpha$  forest
- late-time formation of dwarf galaxies



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

### Thermal history of the IGM



 $\rightarrow$  increased temperature at **mean** density!



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Evolution of the temperature-density relation

#### no blazar heating

#### with blazar heating



Chang, Broderick, C.P. (2012)

- blazars and extragalactic background light are uniform:
  - $\rightarrow$  blazar heating rate independent of density
  - $\rightarrow$  makes low density regions hot
  - ightarrow causes inverted temperature-density relation,  $T \propto 1/\delta$



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

#### Blazars cause hot voids



 blazars completely change the thermal history of the diffuse IGM and late-time structure formation



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Cosmological hydrodynamical simulations

- include predicted volumetric heating rate in cosmological hydrodynamical simulations
- study:
  - thermal properties of intergalactic medium
  - Lyman-α forest





Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Temperature-density relation



Puchwein, C.P., Springel, Broderick, Chang (2012)

нітз

Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## The Lyman- $\alpha$ forest





Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

#### The observed Lyman- $\alpha$ forest



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

### The simulated Ly- $\alpha$ forest



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

#### Ly- $\alpha$ flux PDFs and power spectra



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

#### Lyman- $\alpha$ forest in a blazar heated Universe

improvement in modelling the Lyman- $\alpha$  forest is a direct consequence of the peculiar properties of blazar heating:

- heating rate independent of IGM density  $\rightarrow$  naturally produces the inverted  $T-\rho$  relation that Lyman- $\alpha$  forest data demand
- recent and continuous nature of the heating is needed to match the redshift evolutions of all Lyman- $\alpha$  forest statistics
- magnitude of the heating rate required by Lyman- $\alpha$  forest data  $\sim$  the total energy output of TeV blazars (or equivalently  $\sim 0.2\%$  of that of quasars)



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## "Missing satellite" problem in the Milky Way



Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure
   → higher Jeans mass:

$$M_J \propto rac{c_s^3}{
ho^{1/2}} \propto \left(rac{T_{
m IGM}^3}{
ho}
ight)^{1/2} \quad 
ightarrow \quad rac{M_{J,
m blazar}}{M_{J,
m photo}} pprox \left(rac{T_{
m blazar}}{T_{
m photo}}
ight)^{3/2} \gtrsim 30$$

 $\rightarrow$  blazar heating increases  $M_J$  by 30 over pure photoheating!

#### complications: non-linear collapse, delayed pressure response in expanding universe → concept of "filtering mass" C.P., Chang, Broderick (2012)



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

### Dwarf galaxy formation suppressed



• blazar heating suppresses the formation of late-forming dwarfs within existing dark matter halos of masses  $< 10^{11} M_{\odot}$  $\rightarrow$  introduces new time and mass scale to galaxy formation!



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Conclusions on blazar heating

**Blazar heating:** TeV photons are attenuated by EBL; their kinetic energy  $\rightarrow$  heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
  - lack of GeV bumps in blazar spectra without IGM B-fields
  - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
  - uniform and z-dependent preheating
  - quantitative self-consistent picture of high-z Lyman- $\alpha$  forest
- significantly modifies late-time structure formation:
  - suppresses late dwarf formation
  - void phenomenon, "missing satellites" (?)



Properties of blazar heating The Lyman- $\alpha$  forest **Dwarf galaxies** 

### Literature for the talk

- Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars *I: implications of plasma instabilities for the intergalactic magnetic field and extragalactic gamma-ray background*, ApJ, 752, 22, 2012.
- Chang, Broderick, Pfrommer, *The cosmological impact of luminous TeV blazars II: rewriting the thermal history of the intergalactic medium*, ApJ, 752, 23, 2012.
- Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars III: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752, 24, 2012.
- Puchwein, Pfrommer, Springel, Broderick, Chang, *The Lyman-α forest in a blazar-heated Universe*, MNRAS, 423, 149, 2012.
- Broderick, Pfrommer, Chang, Puchwein, Implications of plasma beam instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin of the extragalactic gamma-ray background, ApJ, 790, 137, 2014.
- Chang, Broderick, Pfrommer, Puchwein, Lamberts, Shalaby, The effect of nonlinear Landau damping on ultrarelativistic beam plasma instabilities, ApJ, 2014, 797, 110.



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

#### Additional slides



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Challenges to the Challenge

Challenge #1: quenching of linear growth & non-linear saturation



PIC simulations:  $\alpha = n_{\text{beam}}/n_{\text{IGM}}$ , 1D: black – two-stream & green – oblique, 2D: red – oblique (Sironi & Giannios 2013)  quenching of linear growth at small level (10<sup>-3</sup> – 10<sup>-2</sup>) ε<sub>e</sub>

• cold beam: slow secular growth with non-linear saturation only  $\sim$  10% of the beam energy transferred to the IGM



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

### Plasma simulations: resolution

Shalaby+ (2016)

• Spatial resolution:



resolution:Spectral resolution:

Momentum





Blazars Blazars Gamma-ray sky Structure formation

Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

#### Plasma simulations: resolution

Shalaby+ (2016)







Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Challenges to the Challenge

Challenge #2: inhomogeneous universe



universe is inhomogeneous

 → electron density changes as
 a function of position

 could lead to loss of resonance over length scale ≪ length scale for instability growth

condition for linear growth to occur is claimed (Miniati & Elyiv 2013)

$$\frac{\text{few}}{\Gamma_m} < \frac{\Delta k_{\parallel}}{|dk/dt|} \quad \xrightarrow[modes (1D)]{} \frac{\gamma_b}{\alpha} \frac{c\lambda_{\parallel}}{\omega_p} < 1,$$
where  $\lambda_{\parallel} \equiv |n/\nabla n|$ .



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Background inhomogeneity effects

$$\begin{array}{ll} \textbf{Condition} & \left(\gamma_{\textit{b}}/\alpha\right)\left(c\lambda_{\parallel}/\omega_{\textit{p}}\right) < 1\\ \\ \textbf{Simulation} & \left(\gamma_{\textit{b}}/\alpha\right)\left(c\lambda_{\parallel}/\omega_{\textit{p}}\right) \sim 10^7 \end{array}$$

Shalaby+ (2016): 1D PIC simulation shows linear wave growth at lower growth rate, more energy lost by the beam than for uniform case.



Properties of blazar heating The Lyman- $\alpha$  forest Dwarf galaxies

## Challenges to the Challenge

Challenge #3: induced scattering (non-linear Landau damping)



Chang+ (2014)

- we assume that the non-linear damping rate = linear growth rate
- wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is ≪ linear growth rate
- accounting for much faster *collisionless scattering* (kinetic regime) → powerful instability, faster than IC cooling

(Schlickeiser+ 2013, Chang+ 2014)

