Blazar Modeling and the Minimum Power Condition 23 September 2016 **Ruhr Astroparticle and Plasma Physics Inauguration Conference** Bochum, Germany

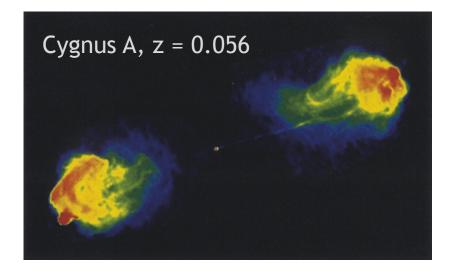
rmassive

5 milliarcsec 0.5 light-year

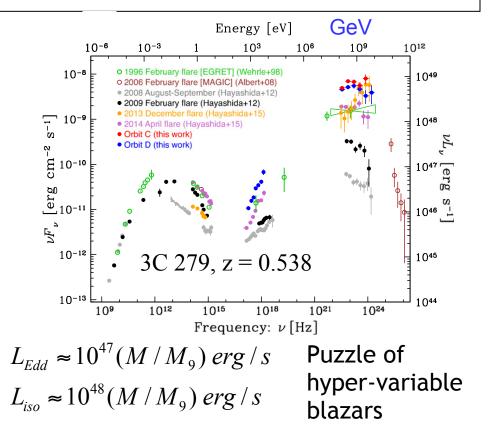
IGMF y rays **UHECRs** BH/jet physics SMBH growth and galaxy evolution EBL

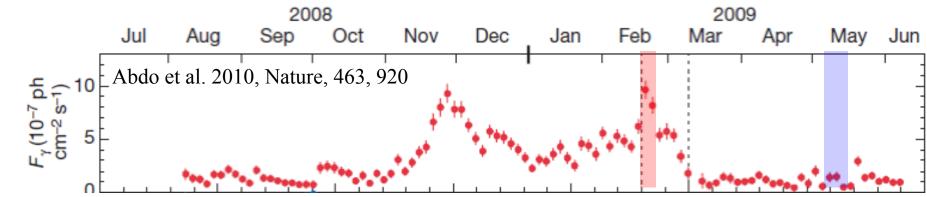
Dr. Charles D. Dermer George Mason University Fairfax, Virginia USA

Blazars: Supermassive Black Holes with Relativistic Jets Pointed at Us

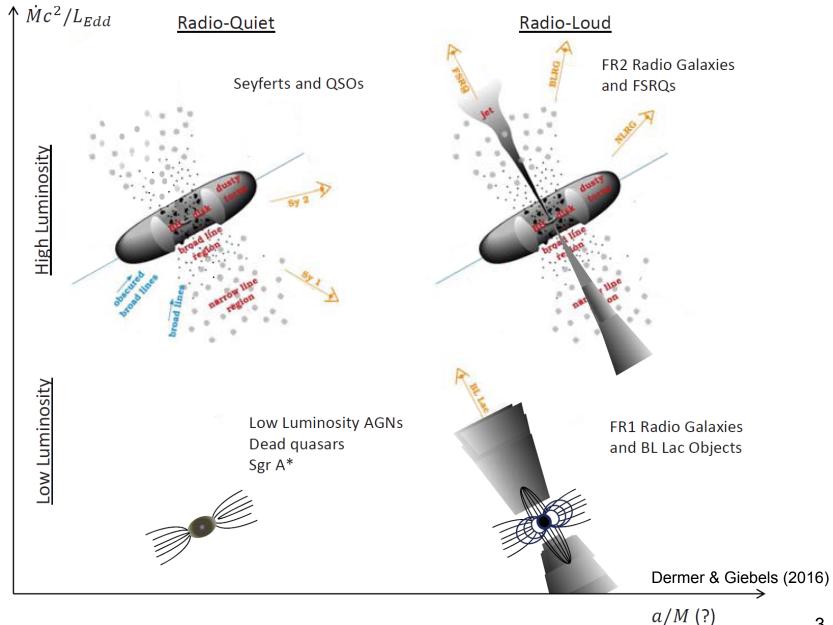


Causality argument for size of emission region $R / c \leq \Delta t_{\text{var}} \qquad R_s = \frac{2GM}{c^2} = 3 \times 10^9 (M/M_9) cm \qquad L_{Edd} \approx 10^{47} (M/M_9) erg / s$ $\Delta t_{\text{var}} \leq 1 day \qquad R_s / c \approx 10^4 (M/M_9) s \qquad L_{iso} \approx 10^{48} (M/M_9) erg / s$





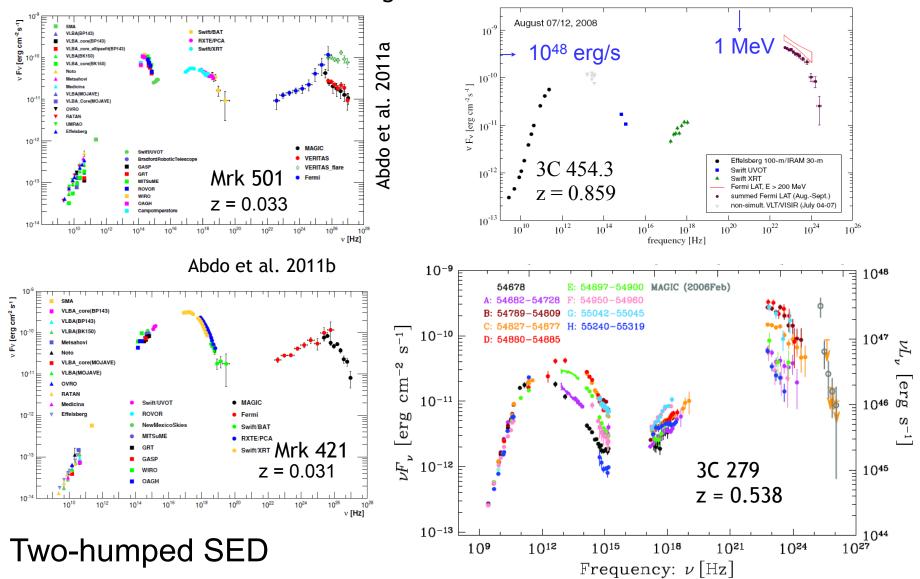
Classes of Active Galactic Nuclei and Unification



3

Blazar spectral energy (power) distributions

BL Lacs: emission to VHE/TeV energies FSRQs: cutoffs at GeV with VHE episodes



Blazar Modeling

Nonthermal γ rays \Rightarrow relativistic particles + intense photon fields

Leptonic jet models:

- Nonthermal synchrotron radiation for radio through optical (low-energy hump)
- Compton scattering of ambient radiation fields by jet electrons making high-energy Xray/γ-ray component by synchrotron self-Compton (SSC) or external Compton (EC) processes (FSRQs)

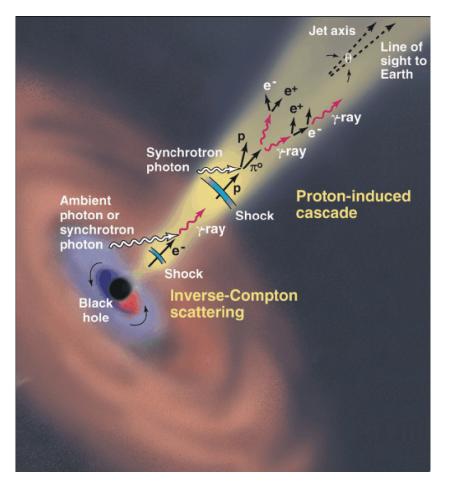
Lepto-Hadronic jet models:

- Nonthermal synchrotron radiation for radio through optical (low-energy hump)
- Secondary nuclear production

 $p+N \rightarrow \pi^{o}, \pi^{\pm} \rightarrow \gamma, \nu, n, e^{\pm}$

- Proton and ion synchrotron radiation $\mathbf{p}+\mathbf{B} \rightarrow \gamma$
- Photomeson production

 $p\gamma \rightarrow \pi^{o}, \pi^{\pm} \rightarrow \gamma, \nu, n, e^{\pm}$ Hadrons escape to become UHECRs



Particle Acceleration and Radiation in Leptonic Blazar Models

$$\frac{\partial n(\gamma;t)}{\partial t} + \frac{\partial}{\partial \gamma} [\dot{\gamma} n(\gamma;t)] + \frac{n(\gamma;t)}{t_{esc}(\gamma,t)} = \dot{n}(\gamma;t) \mathbf{1}.$$

The synchrotron flux is then given by

$$f_{\epsilon}^{\text{syn}} = \frac{\delta_{\text{D}}^{4} \epsilon' J_{\text{syn}}'(\epsilon')}{4\pi d_{L}^{2}} = \frac{\sqrt{3}\delta_{\text{D}}^{4} \epsilon' e^{3}B}{4\pi h d_{L}^{2}} \int_{1}^{\infty} d\gamma' N_{e}'(\gamma') R(x). \quad \begin{array}{c} \textbf{4.} \\ \textbf{5.} \\ \textbf{6.} \end{array}$$

$$\begin{split} f_{\epsilon_s}^{\text{SSC}} &= \left(\frac{3}{2}\right)^3 \frac{d_L^2 \epsilon_s'^2}{R_b'^2 c \delta_{\rm D}^4 U_B} \int_0^\infty d\epsilon' \frac{f_{\tilde{\epsilon}}^{\text{syn}}}{\epsilon'^3} \\ &\times \int_{\gamma_{\min}'}^{\gamma_{\max}'} d\gamma' \frac{F_{\rm C}(q, \Gamma_e) f_{\hat{\epsilon}}^{\text{syn}}}{\gamma'^5}, \end{split}$$

 $f_{\varepsilon} = v F_{v}$

- Relativistic outflows
- Single zone; exclude radio
- 3. Synchroton, SSC, and EC
 - Electron energy distribution
 - Power-law injection + losses

Charles D. Dermer and Govind Menor

HIGH ENERGY RADIATION FROM BLACK HOLES

Gamma Rav

Cosmic Rays

and Neutrinos

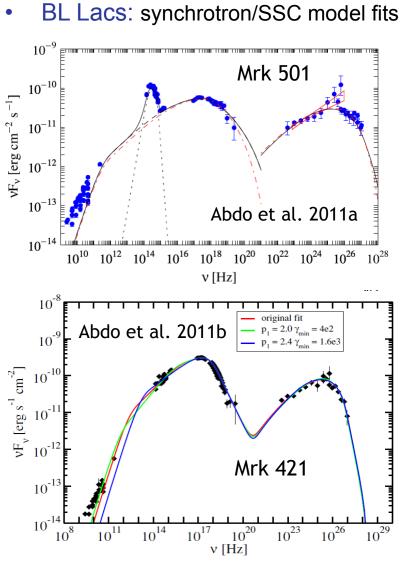
- 6. Nonlinear losses
- 7. Adiabatic expansion
- 8. Light travel-time effects
- 9. Cascading/γγ pairs in source and IGM
- 10. Multizone/spine-sheath
- 11. Anisotropic effects
- 12. Reverberation/echo

$$f_{\epsilon}^{\text{EC}} = \frac{3}{4} \; \frac{c\sigma_{\rm T}\epsilon_s^2}{d_L^2} \; \delta_{\rm D}^3 \; \int_0^\infty d\epsilon_* \; \frac{u_*(\epsilon_*)}{\epsilon_*^2} \int_{\gamma_{min}}^{\gamma_{max}} d\gamma \; \frac{N_e'(\gamma',\Omega')}{\gamma^2} \; F_{\rm C}(q,\Gamma_e) \; d\epsilon_* \; \frac{u_*(\epsilon_*)}{\epsilon_*^2} \int_{\gamma_{min}}^{\gamma_{max}} d\gamma \; \frac{N_e'(\gamma',\Omega')}{\gamma^2} \; F_{\rm C}(q,\Gamma_e) \; d\epsilon_* \; d\epsilon_* \; \frac{u_*(\epsilon_*)}{\epsilon_*^2} \int_{\gamma_{min}}^{\gamma_{max}} d\gamma \; \frac{N_e'(\gamma',\Omega')}{\gamma^2} \; F_{\rm C}(q,\Gamma_e) \; d\epsilon_* \; d\epsilon_*$$

Boettcher & Chiang (2002) Finke et al. (2008) Dermer & Menon (2009)

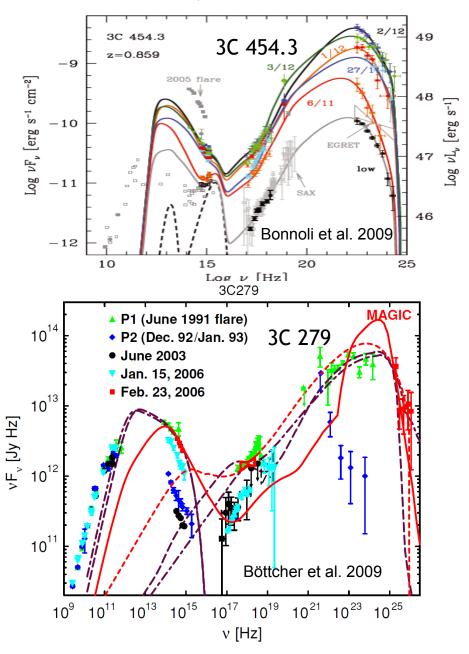
Trend toward increasing complexity in blazar modeling

Spectrum and Jet Physics

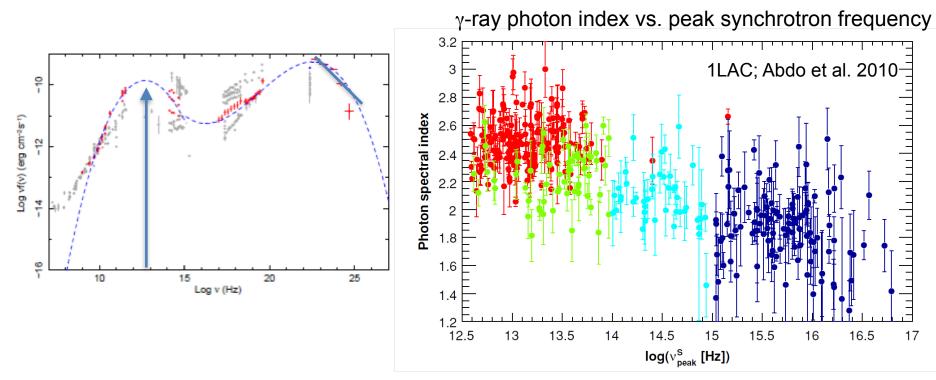


Multiple parameters: non-uniqueness

• FSRQs: synchrotron/SSC + EC



The Synchrotron Puzzle



In Fermi acceleration scenarios, acceleration timescale > Larmor timescale Equating synchrotron energy loss time scale with Larmor timescale implies maximum synchrotron energy ~ 100Γ MeV (de Jager & Harding 1992)

Peak or maximum synchrotron frequency of blazars 4-7 orders of magnitude less than theoretical maximum

Acceleration Physics and the Electron Energy Distribution

 $\gamma'^2 N'_e(\gamma'^2) \approx K(\frac{\gamma'}{\gamma'_{pk}})^{2-(\frac{2+r}{r-1})} = K(\frac{\gamma'}{\gamma'_{pk}})^{(\frac{r-4}{r-1})}$

First-Order Fermi Acceleration

(Naively) makes power-law distributions

Second-order Fermi Acceleration

$$t_{II} \propto \varsigma \beta_A^2 \gamma^{2-q} \qquad \gamma'^2 N'_e(\gamma'^2) = K(\frac{\gamma'}{\gamma'_{pk}})^{-b\log(\gamma'/\gamma'_{pk})}$$

Makes curved log-parabola-like particle distribution (Massaro et al. 2004; Stawarz & Petrosian 2008; Tramacere et al. 2007, 2011)

Fermi 1: separate acceleration and radiation regions Fermi 2: acceleration and radiation regions same

Turbulent particle acceleration and magnetic reconnection invoked in highly magnetized jets for short variability time scales

(Lazarian et al.; Sironi & Spikovsky 2014; Giannios et al. 2009, Sironi, Petropoulou, & Giannios 2015)

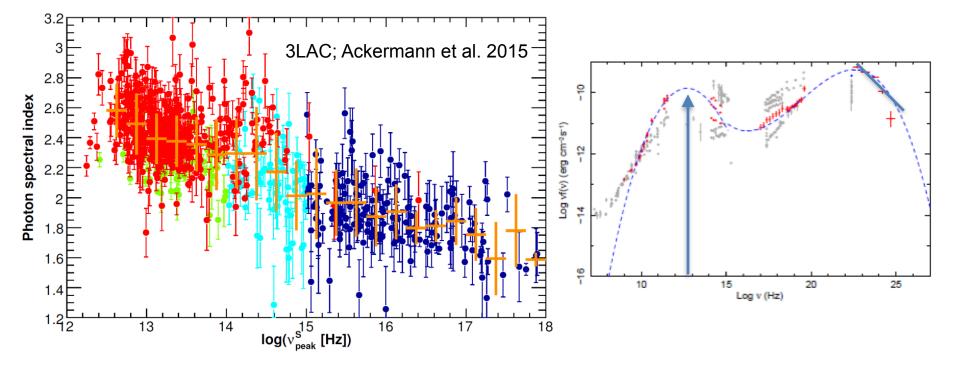
Bright Fermi blazars explained by broken power-law and log-parabola spectral functions about equally (Kohler & Nalewajko 2015)

Blazar modeling with log-parabola electron energy distributions

Explain correlations of spectral index with peak synchrotron and Compton frequencies in blazars CD, Yan, Zhang, Finke, Lott; ApJ 2015

$$\Gamma_{\gamma} = d - k \log v_{14}$$
$$v_{14} = v_s / 10^{14} Hz$$
$$k = 0.18 \pm 0.03$$

Spectral Index Diagram



Near-equipartition, log-parabola model

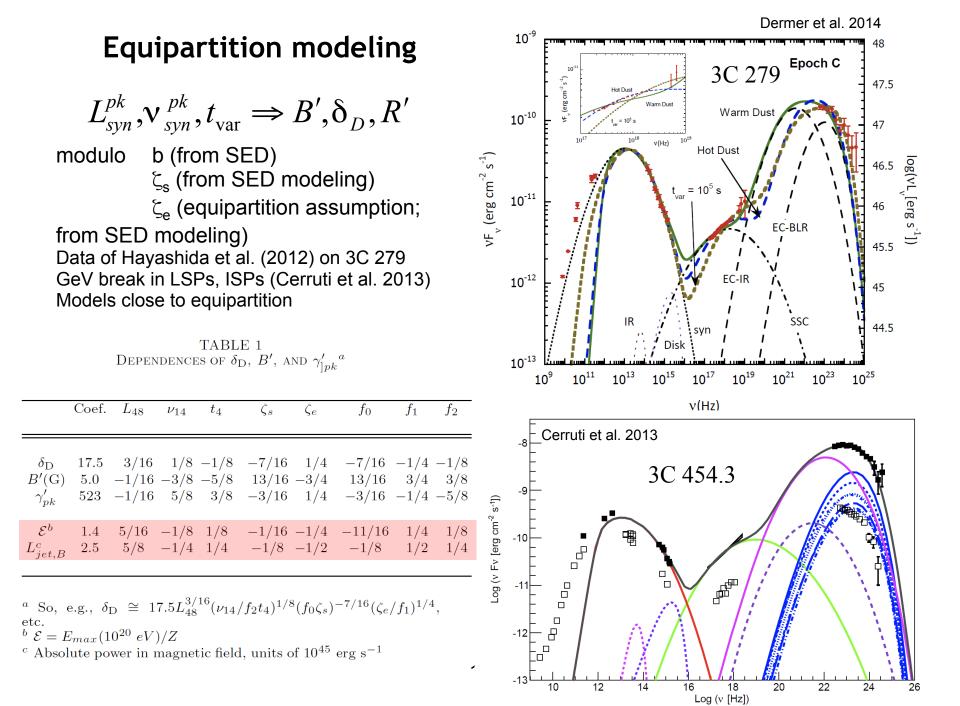
Electron energy distribution (EED): $\gamma'^2 N'_e(\gamma') = K' y^{-b \log y}, y = \gamma' / \gamma'_{pk}$

Simplest non-trivial 3 parameter EED

b is log parabola width parameter

$$\begin{split} u_{\text{syn}}' &= L_{\text{syn}}/4\pi r_b^{/2} c \delta_D^4 f_0 \quad r_b' \cong c \delta_D t_{\text{var}} \\ L_{\text{syn}}^{\text{kinematic}} \\ L_{\text{syn}}^{\text{kinematic}} = 4\pi t_{\text{var}}^2 c^3 \delta_D^6 u_{\text{syn}}' f_0 \\ L_{\text{syn}}^{\text{lum}} &= \frac{4}{3} c \sigma_T u_{B'}' N_{e0} \gamma_{pk}'^2 \delta_D^4 \\ \text{Equipartition relation:} \\ u_e' &= \frac{\mathcal{E}'_e}{V_b'} = \frac{m_e c^2 N_{e0} \gamma_{pk}'}{V_b'} f_1 = \zeta_e u_B' \\ \delta_D &\cong 17.5 L_{48}^{3/16} \frac{\zeta_e^{1/4}}{\zeta_s^{7/16} t_1^{4/8}} \\ B'(G) \cong \frac{5.0 \zeta_s^{13/16}}{L_{48}^{4/16} t_4^{5/8} v_{14}^{3/8} \zeta_e^{3/4}} \\ \gamma_{pk}' \cong 523 \frac{v_{14}^{5/8} \xi_s^{1/4}}{L_{4}^{1/6} \xi_s^{3/16} t_4^{3/8}} \end{split}$$

^JCompletely solvable system; obtain external radiation field energy densities in FSRQ analysis



Analytic form for Spectral Index Diagrams

$$\gamma'^2 N'_e(\gamma') = K' y^{-b \log y}, y = \gamma' / \gamma'_{pk}$$

The comoving synchrotron luminosity

$$L'_{syn} = c\sigma_{\rm T} \frac{B'^2}{6\pi} \int_1^\infty d\gamma' \gamma'^2 N_e(\gamma') \qquad \qquad \epsilon_{pk} = \epsilon_{pk,syn} = \delta_D \frac{4}{3} \frac{B'}{B_{cr}} \gamma'^2_{pk}$$

Results in Thomson regime

$$\begin{split} \epsilon L_{syn}(\epsilon) &= \upsilon x^{1-\hat{b}\ln x} = \upsilon (\frac{\epsilon}{\epsilon_{pk}})^{\frac{1}{2} - \frac{b}{4}} \log(\epsilon/\epsilon_{pk}) & x = \sqrt{\epsilon/\epsilon_{pk}} \\ \upsilon &= f_3 L_{syn} \\ f_3 &= 10^{-1/4b}/(2\sqrt{\pi \ln 10/b}) \\ \alpha_{\nu} &= \frac{d\ln[\epsilon L_{syn}(\epsilon)]}{d\ln \epsilon} = \frac{1}{2} \left[1 - b\log(\frac{\epsilon}{\epsilon_{pk}})\right] & \text{(Massaro et al. 2004)} \\ \Gamma_{\gamma}^{EC} &= \frac{17}{8} + \frac{b}{2} \log\left(\frac{f_0^{5/4} E_{GeV} \zeta_s^{5/4}}{\epsilon_{Ly\alpha} t_4^{1/2} \zeta_e L_{48}^{1/4}}\right) - \frac{3b}{4} \log \nu_{14} & b_{ssc} \cong \frac{b}{8} & \text{(Paggi et al. 2009)} \\ \Gamma_{\gamma}^{SSC} &= \frac{65}{32} + \frac{b}{4} \log\left(\frac{6.5 \times 10^3 E_{GeV} f_0^{3/8} \zeta_s^{3/8} L_{48}^{1/8}}{\zeta_e^{1/2} t_4^{3/4}}\right) - \frac{9b}{16} \log \nu_{14} \end{split}$$

By binning results according to b from synchrotron SED fit, identify radiation process

 $\overline{}$

Equipartition Model vs. Synchrotron Spectral Index Diagram

$$b = 1/2, L_{48} = t_4 = \varsigma_s = \varsigma_e = E_{GeV} = 1$$

Slope for EC processes:

$$k_{EC} = \frac{3b}{4}$$

Slope for SSC processes:

$$k_{SSC} = \frac{9b}{16}$$

Three γ -ray emitting processes: SSC, EC BLR, EC IR

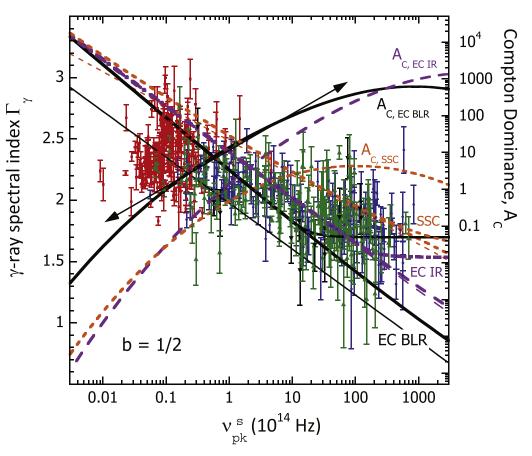
 External radiation field densities:

Ly alpha: 0.01 erg/cm³

IR torus: 10⁻³ erg/cm³; 1000 K dust

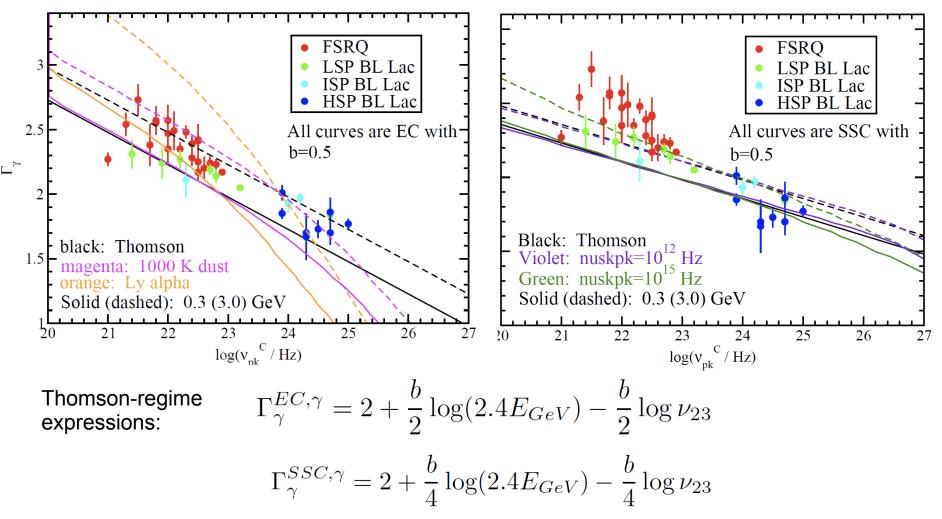
- Compton dominance restricts EC, SSC regimes
- Double-headed arrow shows slope of +1 for Compton dominance (in Thomson regime)

2LAC data: Red: FSRQ; Blue: BL Lac w/ z; Green: BL Lac w/o z



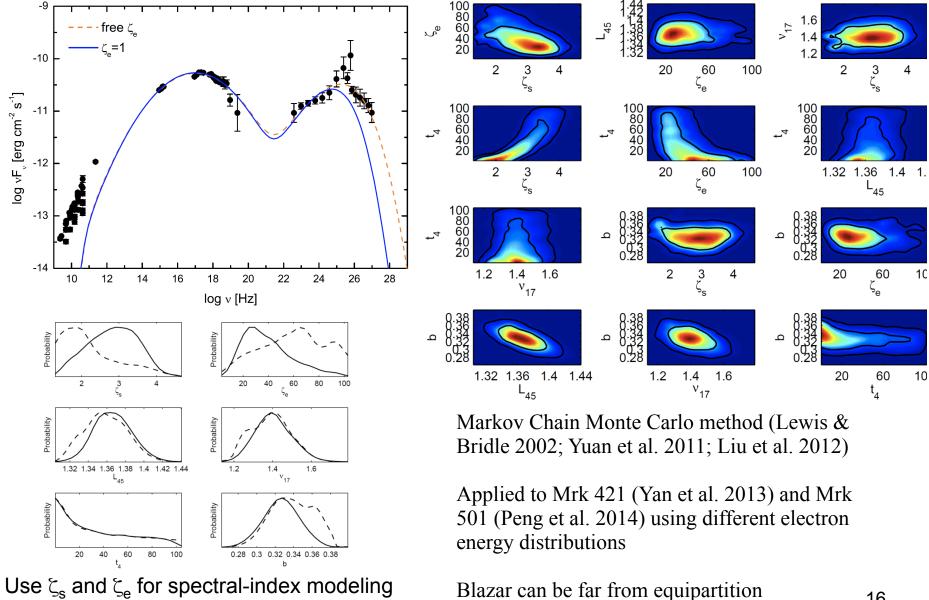
Equipartition model and γ -ray spectral index diagrams

Discriminate between SSC and EC processes in blazars



Rules out SSC as a process for making γ -rays from FSRQs

Departures from equipartition: the case of Mrk 501



Blazar modeling minimizing jet power

work with Maria Petropoulou (Purdue University): ApJL, 2016

Power analysis:
$$L_{j} = 2\pi r_{b}^{\prime 2} \beta \Gamma^{2} c \sum_{i=B,e,p} (u_{i}^{\prime} + P_{i}^{\prime}) + L_{j}^{r} + L_{j}^{cold}$$

 $u_{B'}^{\prime} = B^{\prime 2} / 8\pi$
 $L_{j}^{r} = \kappa L_{s,e} \psi^{2} / \delta_{D}^{2}$
 $u_{i}^{\prime} = 3m_{i}c^{2} \bar{\gamma}_{i}^{\prime} N_{i} / 4\pi r_{b}^{\prime 3}$
 $\psi \equiv 1 + (\Gamma \theta)^{2} > 1$

Minimize power with respect to magnetic field and Doppler factor for monoenergetic particle distributions

Leptonic synchro-Compton (LSC) jet models:

 Obtain unique results for magnetic field and Doppler factor from observables

$$B'_{\min} = 0.17 \ \kappa^{-13/16} t_{\nu,3}^{-5/8} \epsilon_{-3}^{-3/8} L_{45}^{-1/16} G$$

$$\delta_{\text{D,min}} = 59.3 \ \kappa^{7/16} L_{45}^{3/16} \epsilon_{-3}^{1/8} t_{\nu,3}^{-1/8}$$

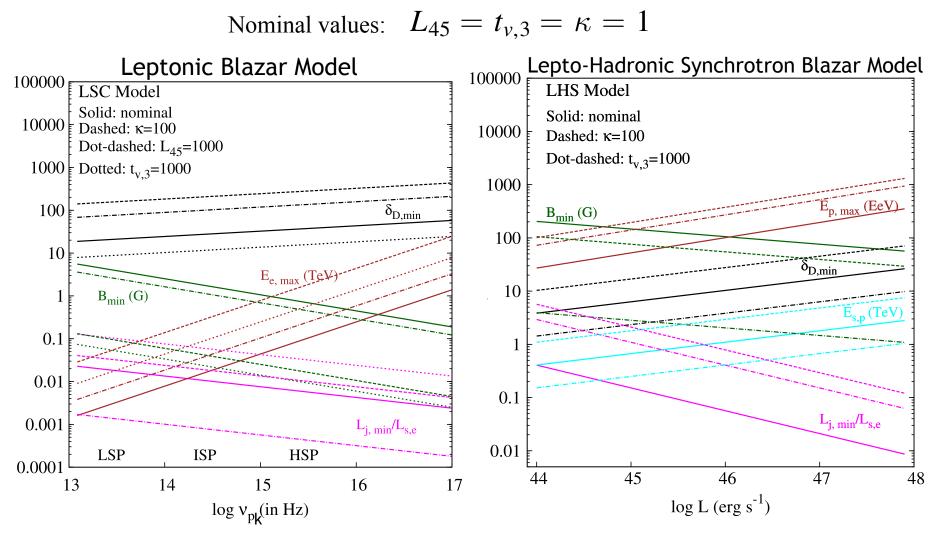
Lepto-Hadronic synchrotron (LHS) jet models:

• Characterize acceleration efficiency through Hillas condition

$$B'_{\min} = 147 \ \kappa^{-4/7} \ \eta^{3/7} t_{\nu,3}^{-4/7} L_{45}^{-4/7} L_{\gamma,45}^{3/7} G$$

$$\delta_{\text{D,min}} = 6.9 \ \kappa^{5/14} \ \eta^{-1/7} L_{45}^{5/14} t_{\nu,3}^{-1/7} L_{\gamma,45}^{-1/7}$$

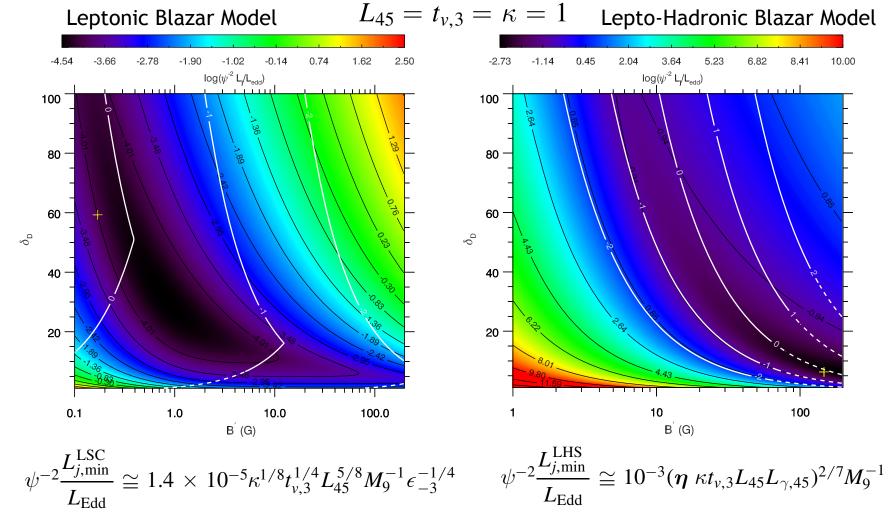
Derived blazar properties minimizing jet power



Values of magnetic field and Doppler factor for leptonic model consistent with values derived through trial and error

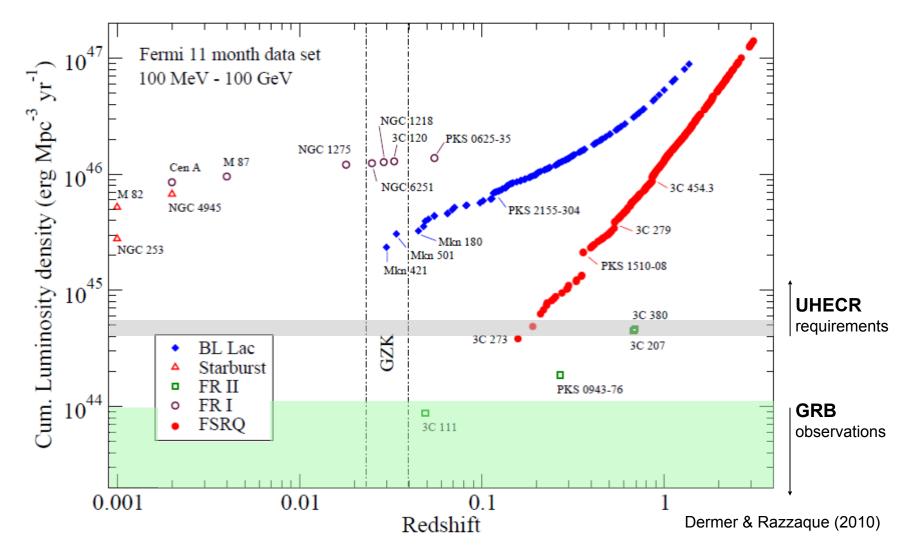
Comparison of derived properties with numerical calculations

Numerical calculation of jet power as a function of Doppler factor and B'



Energetics excessive for FSRQs (but not BL Lacs) for hadronic synchrotron model BL Lacs remain favored candidate UHECR sources

UHECRs: Luminosity density of blazars from Fermi data



Summary

Outlined two new approaches to blazar modelling:

- 1) Near-equipartition approach using log-parabola function for electron energy distribution
- 2) Analysis based on minimizing jet power

For 1), explains the spectral index diagrams and makes predictions for leptonic models correlating widths of synchrotron component and Compton components: but spectral modelling shows some systems are far from equipartition

For 2), strong magnetic fields B > 100 G are found for the LHS model with variability times $=10^3$ s, in accord with highly magnetized, reconnection-driven jet models. Proton synchrotron models of >100 GeV radiation can be sub-Eddington, but models of GeV radiation in FSRQs require excessive power

- Method to determine hadronic content from accurate synchrotron and Y-ray SEDs
- 2) Energetics rules out hadronic synchrotron model for FSRQs but not BL Lacs, consistent with BL Lacs being the sources of the UHECR